• 제목/요약/키워드: AI-based learning assistance system

검색결과 7건 처리시간 0.02초

인공지능 기반 학습 지원 시스템에 관한 사례 분석 (Case Analysis on AI-Based Learning Assistance Systems)

  • 지현경;김민지;이가영;허선영;김명선
    • 공학교육연구
    • /
    • 제27권4호
    • /
    • pp.3-11
    • /
    • 2024
  • This study classified domestic and international systems by type, presenting their key features and examples, with the aim of outlining future directions for system development and research. AI-based learning assistance systems can be categorized into instructional-learning evaluation types and academic recommendation types, depending on their purpose. Instructional-learning evaluation types measure learners' levels through initial diagnostic assessments, provide customized learning, and offer adaptive feedback visualized based on learners' misconceptions identified through learning data. Academic recommendation types provide personalized academic pathways and a variety of information and functions to assist with overall school life, based on the big data held by schools. Based on these characteristics, future system development should clearly define the development purpose from the planning stage, considering data ethics and stability, and should not only approach from a technological perspective but also sufficiently reflect educational contexts.

Improving the Performance of Radiologists Using Artificial Intelligence-Based Detection Support Software for Mammography: A Multi-Reader Study

  • Jeong Hoon Lee;Ki Hwan Kim;Eun Hye Lee;Jong Seok Ahn;Jung Kyu Ryu;Young Mi Park;Gi Won Shin;Young Joong Kim;Hye Young Choi
    • Korean Journal of Radiology
    • /
    • 제23권5호
    • /
    • pp.505-516
    • /
    • 2022
  • Objective: To evaluate whether artificial intelligence (AI) for detecting breast cancer on mammography can improve the performance and time efficiency of radiologists reading mammograms. Materials and Methods: A commercial deep learning-based software for mammography was validated using external data collected from 200 patients, 100 each with and without breast cancer (40 with benign lesions and 60 without lesions) from one hospital. Ten readers, including five breast specialist radiologists (BSRs) and five general radiologists (GRs), assessed all mammography images using a seven-point scale to rate the likelihood of malignancy in two sessions, with and without the aid of the AI-based software, and the reading time was automatically recorded using a web-based reporting system. Two reading sessions were conducted with a two-month washout period in between. Differences in the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, and reading time between reading with and without AI were analyzed, accounting for data clustering by readers when indicated. Results: The AUROC of the AI alone, BSR (average across five readers), and GR (average across five readers) groups was 0.915 (95% confidence interval, 0.876-0.954), 0.813 (0.756-0.870), and 0.684 (0.616-0.752), respectively. With AI assistance, the AUROC significantly increased to 0.884 (0.840-0.928) and 0.833 (0.779-0.887) in the BSR and GR groups, respectively (p = 0.007 and p < 0.001, respectively). Sensitivity was improved by AI assistance in both groups (74.6% vs. 88.6% in BSR, p < 0.001; 52.1% vs. 79.4% in GR, p < 0.001), but the specificity did not differ significantly (66.6% vs. 66.4% in BSR, p = 0.238; 70.8% vs. 70.0% in GR, p = 0.689). The average reading time pooled across readers was significantly decreased by AI assistance for BSRs (82.73 vs. 73.04 seconds, p < 0.001) but increased in GRs (35.44 vs. 42.52 seconds, p < 0.001). Conclusion: AI-based software improved the performance of radiologists regardless of their experience and affected the reading time.

Conventional Versus Artificial Intelligence-Assisted Interpretation of Chest Radiographs in Patients With Acute Respiratory Symptoms in Emergency Department: A Pragmatic Randomized Clinical Trial

  • Eui Jin Hwang;Jin Mo Goo;Ju Gang Nam;Chang Min Park;Ki Jeong Hong;Ki Hong Kim
    • Korean Journal of Radiology
    • /
    • 제24권3호
    • /
    • pp.259-270
    • /
    • 2023
  • Objective: It is unknown whether artificial intelligence-based computer-aided detection (AI-CAD) can enhance the accuracy of chest radiograph (CR) interpretation in real-world clinical practice. We aimed to compare the accuracy of CR interpretation assisted by AI-CAD to that of conventional interpretation in patients who presented to the emergency department (ED) with acute respiratory symptoms using a pragmatic randomized controlled trial. Materials and Methods: Patients who underwent CRs for acute respiratory symptoms at the ED of a tertiary referral institution were randomly assigned to intervention group (with assistance from an AI-CAD for CR interpretation) or control group (without AI assistance). Using a commercial AI-CAD system (Lunit INSIGHT CXR, version 2.0.2.0; Lunit Inc.). Other clinical practices were consistent with standard procedures. Sensitivity and false-positive rates of CR interpretation by duty trainee radiologists for identifying acute thoracic diseases were the primary and secondary outcomes, respectively. The reference standards for acute thoracic disease were established based on a review of the patient's medical record at least 30 days after the ED visit. Results: We randomly assigned 3576 participants to either the intervention group (1761 participants; mean age ± standard deviation, 65 ± 17 years; 978 males; acute thoracic disease in 472 participants) or the control group (1815 participants; 64 ± 17 years; 988 males; acute thoracic disease in 491 participants). The sensitivity (67.2% [317/472] in the intervention group vs. 66.0% [324/491] in the control group; odds ratio, 1.02 [95% confidence interval, 0.70-1.49]; P = 0.917) and false-positive rate (19.3% [249/1289] vs. 18.5% [245/1324]; odds ratio, 1.00 [95% confidence interval, 0.79-1.26]; P = 0.985) of CR interpretation by duty radiologists were not associated with the use of AI-CAD. Conclusion: AI-CAD did not improve the sensitivity and false-positive rate of CR interpretation for diagnosing acute thoracic disease in patients with acute respiratory symptoms who presented to the ED.

금융 특화 딥러닝 광학문자인식 기반 문서 처리 플랫폼 구축 및 금융권 내 활용 (Deep Learning OCR based document processing platform and its application in financial domain)

  • 김동영;김두형;곽명성;손현수;손동원;임민기;신예지;이현정;박찬동;김미향;최동원
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.143-174
    • /
    • 2023
  • 인공지능의 발전과 함께 딥러닝을 활용한 인공지능 광학문자인식 기법 (Artificial Intelligence powered Optical Character Recognition, AI-OCR) 의 등장은 기존의 이미지 처리 기반 OCR 기술의 한계를 넘어 다양한 형태의 이미지로부터 여러 언어를 높은 정확도로 읽어낼 수 있는 모델로 발전하였다. 특히, AI-OCR은 인력을 통해 대량의 다양한 서류 처리 업무를 수행하는 금융업에 있어 그 활용 잠재력이 크다. 본 연구에서는 금융권내 활용을 위한 AI-OCR 모델의 구성과 설계를 제시하고, 이를 효율적으로 적용하기 위한 플랫폼 구축 및 활용 사례에 대해 논한다. 금융권 특화 딥러닝 모델을 만듦에 있어 금융 도메인 데이터 사용은 필수적이나, 개인정보보호법 이하 실 데이터의 사용이 불가하다. 이에 본 연구에서는 딥러닝 기반 데이터 생성 모델을 개발하였고, 이를 활용하여 AI-OCR 모델 학습을 진행하였다. 다양한 서류 처리에 있어 유연한 데이터 처리를 위해 단계적 구성의 AI-OCR 모델들을 제안하며, 이는 이미지 전처리 모델, 문자 탐지 모델, 문자 인식 모델, 문자 정렬 모델 및 언어 처리 모델의 선택적, 단계적 사용을 포함한다. AI-OCR 모델의 배포를 위해 온프레미스(On-Premise) 및 프라이빗 클라우드(Private Cloud) 내 GPU 컴퓨팅 클러스터를 구성하고, Hybrid GPU Cluster 내 컨테이너 오케스트레이션을 통한 고효율, 고가용 AI-OCR 플랫폼 구축하여 다양한 업무 및 채널에 적용하였다. 본 연구를 통해 금융 특화 AI-OCR 모델 및 플랫폼을 구축하여 금융권 서류 처리 업무인 문서 분류, 문서 검증 및 입력 보조 시스템으로의 활용을 통해 업무 효율 및 편의성 증대를 확인하였다.

A Review on Advanced Methodologies to Identify the Breast Cancer Classification using the Deep Learning Techniques

  • Bandaru, Satish Babu;Babu, G. Rama Mohan
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.420-426
    • /
    • 2022
  • Breast cancer is among the cancers that may be healed as the disease diagnosed at early times before it is distributed through all the areas of the body. The Automatic Analysis of Diagnostic Tests (AAT) is an automated assistance for physicians that can deliver reliable findings to analyze the critically endangered diseases. Deep learning, a family of machine learning methods, has grown at an astonishing pace in recent years. It is used to search and render diagnoses in fields from banking to medicine to machine learning. We attempt to create a deep learning algorithm that can reliably diagnose the breast cancer in the mammogram. We want the algorithm to identify it as cancer, or this image is not cancer, allowing use of a full testing dataset of either strong clinical annotations in training data or the cancer status only, in which a few images of either cancers or noncancer were annotated. Even with this technique, the photographs would be annotated with the condition; an optional portion of the annotated image will then act as the mark. The final stage of the suggested system doesn't need any based labels to be accessible during model training. Furthermore, the results of the review process suggest that deep learning approaches have surpassed the extent of the level of state-of-of-the-the-the-art in tumor identification, feature extraction, and classification. in these three ways, the paper explains why learning algorithms were applied: train the network from scratch, transplanting certain deep learning concepts and constraints into a network, and (another way) reducing the amount of parameters in the trained nets, are two functions that help expand the scope of the networks. Researchers in economically developing countries have applied deep learning imaging devices to cancer detection; on the other hand, cancer chances have gone through the roof in Africa. Convolutional Neural Network (CNN) is a sort of deep learning that can aid you with a variety of other activities, such as speech recognition, image recognition, and classification. To accomplish this goal in this article, we will use CNN to categorize and identify breast cancer photographs from the available databases from the US Centers for Disease Control and Prevention.

AI기반 콜센터 실시간 상담 도우미 시스템 개발 - N은행 콜센터 사례를 중심으로 (Development of AI-based Real Time Agent Advisor System on Call Center - Focused on N Bank Call Center)

  • 류기동;박종필;김영민;이동훈;김우제
    • 한국산학기술학회논문지
    • /
    • 제20권2호
    • /
    • pp.750-762
    • /
    • 2019
  • 기업의 대고객 접점으로써 콜센터의 중요성은 커지고 있다. 하지만, 콜센터는 상담사의 지식 부족과 업무 부적응에 따른 잦은 이직으로 인해 상담사 운영이 어렵고, 이로 인한 고객 서비스 품질 저하의 문제를 안고 있다. 이에 본 연구에서는 상담사에게 업무 지식에 대한 부하를 줄이고 서비스 품질을 향상 시키기 위해 음성 인식 기술과 자연어 처리 및 질의응답을 지원하는 AI 기술과 PBX, CTI 등의 콜센터 정보시스템을 결합하여 실시간으로 상담사에게 고객의 질의 내용에 대한 답변을 제공해주는 "실시간 상담 도우미" 시스템 개발 방안에 대해 N은행 콜센터 사례를 통해 연구하였다. 사례연구 결과, 실시간 통화 분석을 위한 음성인식 시스템의 구성방안과, 질의응답 시스템의 자연어처리 성능 향상을 위한 말뭉치 구축 방안을 확인 할 수 있었으며, 특히 개체명 인식기의 경우 도메인에 맞는 말뭉치 학습 후 정확도가 31% 향상됨을 확인하였다. 또한, 상담 도우미 시스템을 적용한 후 상담 도우미의 답변에 대한 상담사들의 긍정적 피드백 비율이 93.1%로써 충분히 상담사 업무에 도움을 주고 있음을 확인하였다.

A Study on the Intelligent Online Judging System Using User-Based Collaborative Filtering

  • Hyun Woo Kim;Hye Jin Yun;Kwihoon Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.273-285
    • /
    • 2024
  • 교육 분야에서 온라인 저지 시스템이 활발하게 활용됨에 따라 학습자 데이터를 활용하는 다양한 연구가 진행되고 있다. 본 연구에서는 학습자 데이터를 활용하여 학습자의 문제 선택을 지원할 수 있는 사용자 기반 협업 필터링 방식의 문제추천 기능을 제안한다. 온라인 저지 시스템에서 학습자의 문제 선택을 위한 지원은 그들의 향후 학습에 영향을 미치므로 교육의 효과성 제고를 위해 필요하다. 이를 위해 학습자의 문제풀이 성향과 유사한 학습자를 식별하고 그들의 문제풀이 이력을 활용한다. 제안 기능은 충북교육연구정보원에서 운영하는 알고리즘과 프로그래밍 관련 온라인 저지 사이트에 구현됐고, 서비스 유용성과 사용 편이성 측면에서 델파이 기법을 통한 전문가 검토를 수행했다. 또한 사이트 사용자 대상 시범 운영에서 바른코드 제출 비율을 분석한 결과 추천문제에 대해 제출한 경우가 전체 제출에 비해 16% 정도 높았고, 추천문제 사용자 대상 설문조사에서 '도움 된다' 응답은 78%였다. 시범 운영에서는 추천문제 선택과 사용자 피드백 관련 설문 응답 비율이 낮았으므로, 향후 연구과제로 제안 기능의 접근성 향상, 사용자 피드백 수집 및 학습자 데이터 분석 다각화 등을 제시했다.