Dong-Jun Seo;Seung-Chan Lee;Yoon-Jung Heo;Il-Yong Won
Annual Conference of KIPS
/
2023.11a
/
pp.424-425
/
2023
AI 의료 영상 분석 기술은 의료 분야의 인력 부족 문제를 해결하는 방법으로 주목받고 있다. 이전 연구들은 세그멘테이션 라벨링과 질병 유무를 결합하여 판단하는데, 이 방법은 큰 비용과 시간이 소요된다. 본 논문은 의료 전문가의 세그멘테이션 라벨링 없이 병명 라벨만의 학습으로 질병을 어느 정도 진단할 수 있음을 보인다. 실험에 따르면 의미있는 결과를 확인할 수 있었다.
Brucellosis is a major zoonosis caused by Gram negative facultative intracellular bacterial organisms of the genus Brucella that are pathogenic for a wide variety of animals and human beings. Because of its economic impact on animal health and the risk to the human population,most countries have a brucellosis control program. Brucellosis is also an economically important andprevalent disease in Bangladesh. The accurate and prompt diagnosis is very important in controlling and eradicating of the disease in animals. The present study was undertaken to determine the seroprevalence of brucellosis in cattle in Mymensingh and Patuakhali district of Bangladesh. A total of 120 serum samples were collected from the two districts along with a questionnaire related to the epidemiology of the disease. The sampleswere screened by using slow agglutination test and conformed by indirect enzyme linked immunosorbent assay. The overall seroprevalence of brucellosis in cattle was 5% and it was observed that, a higher prevalence of Brucella was found in female than male, through natural breeding than artificial insemination (AI) and animal above 4 years old are highly susceptible than younger ones. Higher prevalence was found in aborted animals in comparison with non aborted animal. Finally, the study revealed that the female animal has more susceptible to brucellosis and healthy semen should be used for AI.
International Journal of Internet, Broadcasting and Communication
/
v.16
no.3
/
pp.121-138
/
2024
Artificial intelligence is crucial to manufacturing productivity. Understanding the difficulties in producing disruptions, especially in linear feed robot systems, is essential for efficient operations. These mechanical tools, essential for linear movements within systems, are prone to damage and degradation, especially in the LM guide, due to repetitive motions. We examine how explainable artificial intelligence (XAI) may diagnose wafer linear robot linear rail clearance and ball screw clearance anomalies. XAI helps diagnose problems and explain anomalies, enriching management and operational strategies. By interpreting the reasons for anomaly detection through visualizations such as Class Activation Maps (CAMs) using technologies like Grad-CAM, FG-CAM, and FFT-CAM, and comparing 1D-CNN with 2D-CNN, we illustrates the potential of XAI in enhancing diagnostic accuracy. The use of datasets from accelerometer and torque sensors in our experiments validates the high accuracy of the proposed method in binary and ternary classifications. This study exemplifies how XAI can elucidate deep learning models trained on industrial signals, offering a practical approach to understanding and applying AI in maintaining the integrity of critical components such as LM guides in linear feed robots.
Purpose: This study was performed to investigate the relationship between temporomandibular disorders (TMDs) and the asymmetry of the mandibular height. Methods: We compared 100 randomly selected TMD patients diagnosed by the research diagnostic criteria for TMD (RDC/TMD) Axis I with 100 non-TMD control subjects matched with the TMD patients in age and gender. The mandibular heights were measured on an orthopantomogram and the asymmetry index (AI) was calculated as previously described. Results: The absolute AI value of 4.37% turned out to be the least cut-off value defining asymmetry, which showed a significant difference in asymmetry incidence (p<0.01) between the TMD and control groups. The risk of TMD increased in the asymmetry group by 4.57 (odds ratio). The incidence of asymmetry was not related to age and gender in both of the TMD and control groups. When dividing the TMD group according to the RDC/TMD Axis I diagnosis, neither the incidence of muscle disorder nor disk displacement was related to the incidence of asymmetry. However, a higher incidence of asymmetry was observed in the subjects classified into the arthrosis/arthritis groups (p<0.01). Conclusions: Although it does not imply a direct cause-and-effect relationship, asymmetry resulting in more than 4.37% difference between mandibular heights may increase the risk of TMD and correlates positively to the incidence of arthritic change in the temporomandibular joint of TMD patients.
Lee Chung-Sub;Lim Dong-Wook;Noh Si-Hyeong;Kim Tae-Hoon;Ko Yousun;Kim Kyung Won;Jeong Chang-Won
KIPS Transactions on Computer and Communication Systems
/
v.12
no.3
/
pp.119-126
/
2023
Sarcopenia is not well known enough to be classified as a disease in 2021 in Korea, but it is recognized as a social problem in developed countries that have entered an aging society. The diagnosis of sarcopenia follows the international standard guidelines presented by the European Working Group for Sarcopenia in Older People (EWGSOP) and the d Asian Working Group for Sarcopenia (AWGS). Recently, it is recommended to evaluate muscle function by using physical performance evaluation, walking speed measurement, and standing test in addition to absolute muscle mass as a diagnostic method. As a representative method for measuring muscle mass, the body composition analysis method using DEXA has been formally implemented in clinical practice. In addition, various studies for measuring muscle mass using abdominal images of MRI or CT are being actively conducted. In this paper, we develop an AI image segmentation model based on abdominal images of CT with a relatively short imaging time for the diagnosis of sarcopenia and describe the multicenter validation. We developed an artificial intelligence model using U-Net that can automatically segment muscle, subcutaneous fat, and visceral fat by selecting the L3 region from the CT image. Also, to evaluate the performance of the model, internal verification was performed by calculating the intersection over union (IOU) of the partitioned area, and the results of external verification using data from other hospitals are shown. Based on the verification results, we tried to review and supplement the problems and solutions.
The COVID-19 pandemic has been reshaping the world by accelerating non-contact services and technologies in various domains. Hospitals as a healthcare system lie at the center of the dramatic change because of their fundamental roles: medical diagnosis and treatments. Leading experts in health, science, and technologies have predicted that robotics and artificial intelligence (AI) can drive such a hospital transformation. Accordingly, several government-led projects have been developed and started toward smarter hospitals, where robots and AI replace or support healthcare personnel, particularly in the diagnosis and non-surgical treatment procedures. This article inspects the remaining element of healthcare services, i.e., surgical treatment, focusing on evaluating whether or not currently available laparoscopic surgical robotic systems are sufficiently preparing for the era of post-COVID-19 when contactless is the new normal. Challenges and future directions towards an effective, fully non-contact surgery are identified and summarized, including remote surgery assistance, domain-expansion of robotic surgery, and seamless integration with smart operating rooms, followed by emphasis on robot tranining for surgical staff.
Kim, Cheol-Ho;Bhak, Jong-Sik;Shin, Jung-Sub;Kang, Chung-Bo
Korean Journal of Veterinary Service
/
v.31
no.3
/
pp.397-414
/
2008
In order to evaluate conception rate of Hanwoo in northwestern region of Gyeongsang-nam-do, we investigated conception rate and reduction of reproductive disorder rate after artificial insemination (AI) in 1,000 heads of breeding cows, This study showed that 80.9% of cows were classified as fertility after 1st and 2nd AI. For a accurate pregnancy diagnosis with practicing ovariectomy and histeotomy, we comparatively investigated each of 80 slaughtered cows, including 30 of non-pregnancy, and used enzyme-linked immunosorbent assay (ELISA) for estimation of plasma progesterone concentration and serum luteal hormone. The mean diameter of non-pregnant corpus luteum is $18.9{\pm}4.2{\times}15.6{\pm}3.6 mm$ and that of pregnant corpus luteum is $22.5{\pm}2.7{\times}18.7{\pm}2.9 mm$. This indicates that corpus luteum is more developed in the ovary of pregnant than non-pregnant cows (P<0.05). The diameter of pregnant corpus luteum according to the stage of pregnancy showed $21.3{\pm}2.4{\pm}18.4{\pm}2.6 mm$ in early stage (1-3 month), $23.4{\pm}2.8{\times}19.1{\pm}2.7 mm$ in middle stage (4-6 month) and $22.8{\pm}3.0{\times}18.8{\pm}2.4mm$, in last stage (7-9 month). This indicates that corpus luteum in middle and last stage is more significantly developed than that of early stage(P<0.05). The mean plasma progesterone concentration of cows showing size of non-pregnant corpus luteum was $4.58{\pm}0.92ng/ml$ and that of pregnant corpus luteum $8.26{\pm}0.98ng/ml$. Thus, it was more significantly increased in pregnant corpus luteum(P<0.02).. However, it was low to $0.58{\pm}0.39ng/ml$. in estrus (corpus albicans). The plasma progesterone concentration according to gestation period was high in proportion to the degree of development in corpus luteum and more significantly increased (P<0.05) and maintained in middle and last state than early state. The concentration was sharply decreased to $0.56{\pm}0.32ng/ml$ at parturition. As a consequence, we can practice the early pregnancy diagnosis by confirming non-pregnancy when the mean plasma progesterone concentration is below 1ng/ml 19 to 22 days after AI and this can be available to diagnose reproductive disorder.
In pediatric healthcare, early detection of cardiovascular diseases in newborns is crucial. Analyzing heart sounds using stethoscopes can be subjective and reliant on physician expertise, potentially leading to delayed diagnosis. There is a need for a simple method that can help even inexperienced doctors detect heart abnormalities without an electrocardiogram or ultrasound. Automated heart sound diagnosis systems can aid clinicians by providing accurate and early detection of abnormal heartbeats. To address this, we developed an intelligent deep-learning model incorporating CNN and LSTM to detect heart abnormalities based on artificial intelligence using heart sound data from stethoscope recordings. Our research achieved a high accuracy rate of 97.8%. Using audio data to introduce advanced models for cardiac abnormalities in children is essential for enhancing early detection and intervention in pediatric cardiovascular healthcare.
Jeong Min Go;Ji Yeon Lee;Yun-Kyoung Song;Jae Hyun Kim
Korean Journal of Clinical Pharmacy
/
v.34
no.2
/
pp.134-139
/
2024
Background: Increasing numbers of studies and research about artificial intelligence (AI) and machine learning (ML) have led to their application in clinical trials. The purpose of this study is to analyze computer-based new technologies (AI/ML) applied on clinical trials registered on ClinicalTrials.gov to elucidate current usage of these technologies. Methods: As of March 1st, 2023, protocols listed on ClinicalTrials.gov that claimed to use AI/ML and included at least one of the following interventions-Drug, Biological, Dietary Supplement, or Combination Product-were selected. The selected protocols were classified according to their context of use: 1) drug discovery; 2) toxicity prediction; 3) enrichment; 4) risk stratification/management; 5) dose selection/optimization; 6) adherence; 7) synthetic control; 8) endpoint assessment; 9) postmarketing surveillance; and 10) drug selection. Results: The applications of AI/ML were explored in 131 clinical trial protocols. The areas where AI/ML was most frequently utilized in clinical trials included endpoint assessment (n=80), followed by dose selection/optimization (n=15), risk stratification/management (n=13), drug discovery (n=4), adherence (n=4), drug selection (n=1) and enrichment (n=1). Conclusion: The most frequent application of AI/ML in clinical trials is in the fields of endpoint assessment, where the utilization is primarily focuses on the diagnosis of disease by imaging or video analyses. The number of clinical trials using artificial intelligence will increase as the technology continues to develop rapidly, making it necessary for regulatory associates to establish proper regulations for these clinical trials.
KIPS Transactions on Software and Data Engineering
/
v.12
no.10
/
pp.445-454
/
2023
Recently, various fault diagnosis studies are being conducted utilizing data from collaborative robots. Existing studies performing fault diagnosis on collaborative robots use static data collected based on the assumed operation of predefined devices. Therefore, the fault diagnosis model has a limitation of increasing dependency on the learned data patterns. Additionally, there is a limitation in that a diagnosis reflecting the characteristics of collaborative robots operating with multiple joints could not be conducted due to experiments using a single motor. This paper proposes an LSTM diagnostic model that can overcome these two limitations. The proposed method selects representative normal patterns using the correlation analysis of vibration and current data in single-axis and multi-axis work environments, and generates residual patterns through differences from the normal representative patterns. An LSTM model that can perform gear wear diagnosis for each axis is created using the generated residual patterns as inputs. This fault diagnosis model can not only reduce the dependence on the model's learning data patterns through representative patterns for each operation, but also diagnose faults occurring during multi-axis operation. Finally, reflecting both internal and external data characteristics, the fault diagnosis performance was improved, showing a high diagnostic performance of 98.57%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.