Rapid development of information and communication technology is leading the digital transformation (hereinafter, DT) of various industries. At this point in rapid online transition, fashion manufacturers operating offline-oriented businesses have become highly interested in DT and artificial intelligence (hereinafter AI), which leads DT. The purpose of this study is to examine the development status and application case of AI-based digital technology developed for the fashion industry, and to examine the DT stage and AI application status of domestic fashion manufacturers. Hence, in-depth interviews were conducted with five domestic IT companies developing AI technology for the fashion industry and six domestic fashion manufacturers applying AI technology. After analyzing interviews, study results were as follows: The seven major AI technologies leading the DT of the fashion industry were fashion image recognition, trend analysis, prediction & visualization, automated fashion design generation, demand forecast & optimizing inventory, optimizing logistics, curation, and ad-tech. It was found that domestic fashion manufacturers were striving for innovative changes through DT although the DT stage varied from company to company. This study is of academic significance as it organized technologies specialized in fashion business by analyzing AI-based digitization element technologies that lead DT in the fashion industry. It is also expected to serve as basic study when DT and AI technology development are applied to the fashion field so that traditional domestic fashion manufacturers showing low growth can rise again.
The purpose of this study is to see the method of the analysis of EEG(Electroencephalography) whcih is a nonlinear system, to quantize human emotion under color stimulation using the analysis of EEG. The result of this study would be used clinical study and development fo image instruments with color. In this study, the method of the analysis of EEG is power spectrum using FFT(Fast Fourier Transform) and the modelling of EEG under color stimulation base on back propagation Neural Networks ond of AI(Artfical Intellignece) skills. First, input layer make a match to relative power which get analyzing s in 4 channels, and output layer make a match to color stimulation which is measured human emotion. Finally, weights of each neurons determine by learing back porpagation Neural Networks.
본 연구는 한국에서 상용화된 인공지능(AI) 기반 의료 영상 장치의 발전과 현재 동향을 분석하는 것을 목표로 한다. 2023년 9월 30일 기준으로 한국 식품의약품안전처에 허가, 인증 및 신고된 AI 기반 의료기기는 총 186개로, 이 중 138개가 영상의학과와 관련된 제품이었다. 본 연구는 2018년부터 2023년까지의 연도별 허가 추세, 장비 유형, 적용 부위, 주요 기능 등을 종합적으로 고찰하였다. 연구 결과, AI 의료기기는 2018년 4개 제품에서 시작하여 2023년까지 꾸준한 성장세를 보였으며, 특히 2020년 이후 급격한 증가세를 나타내었다. 이는 AI 기술의 발전과 의료분야의 수요 증가가 상호 작용한 결과로 볼 수 있다. 장비별로는 CT, X-ray, MR 순으로 AI 의료기기가 개발되었으며, 이는 각 장비별 이미지의 특성과 임상적 중요성을 반영한다. 본 연구에서는 흉부, 뇌신경, 근골격계 등 특정 부위에 대한 AI 의료기기 개발이 활발한 것을 확인하였고, 주요 기능별로는 의료영상 분석, 탐지 및 진단 보조, 영상 전송 등이 주를 이루었다. 이러한 결과는 AI의 패턴 인식 및 데이터 분석 능력이 의료영상 분야에서 중요한 역할을 하고 있음을 시사한다. 또한, 본 연구는 한국 제품이 국제적인 인증, 특히 미국 FDA와 유럽 CE 인증을 받은 사례를 조사하였다. 그 결과, 다수의 제품이 두 기관의 인증을 받았으며, 이는 한국의 AI 의료기기가 국제적 수준에 부합하며, 글로벌 시장에서의 경쟁력을 갖추고 있음을 보여준다. 본 연구는 AI 기술이 의료영상 분야에서 미치는 영향과 그 발전 가능성을 분석함으로써, 향후 연구 및 개발 방향에 중요한 시사점을 제공한다. 하지만, 규제 측면, 데이터의 질과 접근성, 임상적 유효성 등의 도전 과제도 지적되어, 이러한 문제들에 대한 지속적인 연구와 개선이 요구된다.
본 논문에서는 노후화된 목조·석조 건축물의 균열을 탐지하는 기법을 소개한다. 본 기법의 목적은 석조·목조 문화재의 시간의 흐름에 따른 관리 소홀, 균열(벌레, 날씨, 기온 등), 배부름 현상에 의한 문화재의 손상을 사전에 방지하기 위함이다. 기존에 존재하는 목조·석조 건축물의 균열, 노후, 배부름 등 다양한 결함과 변형의 탐지 방법은 접촉식 센서를 이용하여 탐지를 해왔지만, 문화재 자체의 미관을 해칠 뿐 아니라 문화재를 추가로 훼손할 가능성이 있다는 문제점이 제시되었다. 이 문제를 해결하기 위해 문화재 비 접촉형 탐지 기법을 사용한다. CCTV 및 DSLR과 같은 관측장비로 촬영한 영상정보를 기반으로 문화재의 결함과 변형을 AI 영상분석 기반 방법으로 판단하는 문제를 제안한다.
본 논문은 특허 출원 문서를 기초로 하여 생성형 AI 기술의 동향을 분석한다. 이를 위해 2003년부터 2023년까지 한국, 미국, 유럽에서 출원된 생성형 AI 관련 특허 5,433건을 선별하고, 국가별, 기술 분야별, 연도별, 출원인별 데이터를 분석하고 시각적으로 제시함으로써 시사점을 찾고 기술 흐름을 확인하고자 한다. 분석 결과, 이미지 분야의 특허가 36.9%로 가장 많고 지속적으로 출원 건수가 상승하고 있지만, 문장/문서나 음악/음성 분야는 2019년 이후로 출원이 감소하거나 유지되고 있다. 가장 많은 특허를 출원한 기업은 한국 기업이지만 상위 5개 출원인 중 4개가 미국 기업이며 모든 기업이 미국에 가장 많은 특허를 출원하고 있어 생성형 AI는 미국 시장을 중심으로 성장하고 경쟁하고 있음을 확인하였다. 논문의 분석 결과는 향후 생성형 AI 연구 개발과 지식 재산 확보 전략을 수립하는 데 활용될 수 있을 것으로 기대된다.
자율주행, AI의 시대가 도래함에 따라 카메라를 통하여 물체를 정확히 인식 및 판단하는 것이 중요해졌다. 특히 카메라를 이용하여 물체를 인식하는 방법은 다른 여러 방법들에 비하여 시각적으로 많은 양의 정보를 얻을 수 있기 때문에 정확한 영상을 추출하기 위하여 많은 영상 신호 처리 방법들이 연구되고 있다. 또한, 이러한 영상 신호 처리의 기능을 실제 하드웨어로 구현하기 위하여 많은 연구도 동시에 진행되고 있다. 본 논문에서는 영상 신호 처리에서 자주 사용되는 정렬 알고리즘에 대하여 동작원리 및 특징을 비교하고 성능에 대한 평가를 정리하였다. 이를 토대로 대표적인 정렬 알고리즘 중 하드웨어로 구현할 때 효율적인 알고리즘에 대하여 정의한다.
COVID-19의 영향으로 로드샵과 수많은 오프라인 매장은 예전과 달리 많은 어려움을 격고 있다. 이에 대응하기 위하여 뷰티업계에서는 고객들의 수요를 충족하고자 다양한 비대면 서비스들을 선보이고 있다. 본 논문에서는 비대면 서비스 중 모바일 환경에서 이미지 기반 퍼스널 컬러 측정 기술의 품질과 제품 추천 서비스에 대한 고찰을 진행하였다. 현재 글로벌 서비스 시장에서 많이 활용되고 있는 엔진에 대한 다양한 실험과 실제 측색 장비를 활용한 컬러 측정 데이터에 대한 비교 분석, 서비스 구현 및 지표 데이터 등으로 구성되었다. 정밀한 실험결과를 위해 일관된 실험 환경에서 실험을 진행하였다. 본 논문이 이미지 기반 피부 컬러 측정에 따른 개인화 제품 추천 서비스의 확장에 활용될 수 있기를 기대한다.
본 연구는 초등학교에서 엔트리의 인공지능 모델을 활용한 융합교육 사례이다. 교과는 영어이며 그림을 그리는 미술과와의 융합 활동과 엔트리의 인공지능모델중 이미지 학습 모델을 기반으로 수업을 진행하였다. 영어과의 말하기 및 쓰기 교육의 학습목표에 효과적으로 달성하기 위해 미술과와 SW를 융합하여 수업을 설계하였다. 학생들은 인공지능을 활용한 의사소통을 경험하고 자신감이 향상되었으며, 듣고 말하는 표현뿐만 아니라 그림이나 사진 등 다양한 매체로 표현하며 창의성과 의사소통 능력을 증진할 수 있었다. 또한 수업의 효과성을 알아보기 위해 학생들에게 설문을 진행하여 그 결과를 분석하였다. 분석 결과 학생들의 수업 참여율, 수업이후 인공지능에 대한 이해 정도, 인공지능에 대한 관심, 인공지능 수업 만족도 등에 긍정적 영향을 주었음을 알 수 있었다.
근감소증은 국내는 2021년 질병으로 분류되었을 만큼 잘 알려져 있지 않지만 고령화사회에 진입한 선진국에서는 사회적 문제로 인식하고 있다. 근감소증 진단은 유럽노인근감소증 진단그룹(EWGSOP)과 아시아근감소증진단그룹(AWGS)에서 제시하는 국제표준지침을 따른다. 최근 진단방법으로 절대적 근육량 이외에 신체수행평가로 보행속도 측정과 일어서기 검사 등을 통하여 근육 기능을 함께 측정할 것을 권고하고 있다. 근육량을 측정하기 위한 대표적인 방법으로 DEXA를 이용한 체성분 분석 방법이 임상에서 정식으로 실시하고 있다. 또한 MRI 또는 CT의 복부 영상을 이용하여 근육량을 측정하는 다양한 연구가 활발하게 진행되고 있다. 따라서 본 논문에서는 근감소증 진단을 위해서 비교적 짧은 촬영시간을 갖는 CT의 복부영상기반으로 AI 영상 분할 모델을 개발하고 다기관 검증한 내용을 기술한다. 우리는 CT 영상 중에 요추의 L3 영역을 분류하여 피하지방, 내장지방, 근육을 자동으로 분할할 수 있는 인공지능 모델을 U-Net 모델을 사용하여 개발하였다. 또한 모델의 성능평가를 위해서 분할영역의 IOU(Intersection over Union)를 계산하여 내부검증을 진행했으며, 타 병원의 데이터를 활용하여 동일한 IOU 방법으로 외부검증을 진행한 결과를 보인다. 검증 결과를 토대로 문제점과 해결방안에 대해서 검증하고 보완하고자 했다.
Different from the field of electro-optical(EO) image analysis, there has been less interest in similarity metrics between synthetic aperture radar(SAR) target images. A reliable and objective similarity analysis for SAR target images is expected to enable the verification of the SAR measurement process or provide the guidelines of target CAD modeling that can be used for simulating realistic SAR target images. For this purpose, this paper presents a similarity analysis method based on the siamese network that quantifies the subjective assessment through the distance learning of similar and dissimilar SAR target image pairs. The proposed method is applied to MSTAR SAR target images of slightly different depression angles and the resultant metrics are compared and analyzed with qualitative evaluation. Since the image similarity is somewhat related to recognition performance, the capacity of the proposed method for target recognition is further checked experimentally with the confusion matrix.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.