• Title/Summary/Keyword: AI healthcare

Search Result 151, Processing Time 0.025 seconds

The Role of Artificial Intelligence and Blockchain in the Metaverse

  • Theodore A., Tagne Poupi;Athar, Ali;Abdullah, Abdullah;Begum, Khadija;Kim, Hee-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.573-576
    • /
    • 2022
  • Currently, the world has known many innovative technologies created to bring users to interact using the internet. The latest buzzword attracting attention both from industry and academia is the metaverse. The metaverse is a virtual environment in which people used virtual reality and augmented reality devices to carry out numerous virtual activities. At first, metaverse applications were mostly virtual games, but now with advances in research, many other applications and technologies are integrating the metaverse among which manufacturing, real estate, healthcare, military, and many others. The proper operation of these applications requires some technologies like blockchain and artificial intelligence. In this paper, we investigate the role of blockchain and AI in the metaverse. This work aims to present the eventual use cases of these technologies in the metaverse regardless of their application domain.

  • PDF

Diabetic Retinopathy Grading in Ultra-widefield fundus image Using Deep Learning (딥 러닝을 사용한 초광각 망막 이미지에서 당뇨망막증의 등급 평가)

  • Van-Nguyen Pham;Kim-Ngoc T. Le;Hyunseung Choo
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.632-633
    • /
    • 2023
  • Diabetic retinopathy (DR) is a prevalent complication of diabetes that can lead to vision impairment if not diagnosed and treated promptly. This study presents a novel approach for the automated grading of diabetic retinopathy in ultra-widefield fundus images (UFI) using deep learning techniques. We propose a method that involves preprocessing UFIs by cropping the central region to focus on the most relevant information. Subsequently, we employ state-of-the-art deep learning models, including ResNet50, EfficientNetB3, and Xception, to perform DR grade classification. Our extensive experiments reveal that Xception outperforms the other models in terms of classification accuracy, sensitivity, and specificity. his research contributes to the development of automated tools that can assist healthcare professionals in early DR detection and management, thereby reducing the risk of vision loss among diabetic patients.

U-Net-based Recommender Systems for Political Election System using Collaborative Filtering Algorithms

  • Nidhi Asthana;Haewon Byeon
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2024
  • User preferences and ratings may be anticipated by recommendation systems, which are widely used in social networking, online shopping, healthcare, and even energy efficiency. Constructing trustworthy recommender systems for various applications, requires the analysis and mining of vast quantities of user data, including demographics. This study focuses on holding elections with vague voter and candidate preferences. Collaborative user ratings are used by filtering algorithms to provide suggestions. To avoid information overload, consumers are directed towards items that they are more likely to prefer based on the profile data used by recommender systems. Better interactions between governments, residents, and businesses may result from studies on recommender systems that facilitate the use of e-government services. To broaden people's access to the democratic process, the concept of "e-democracy" applies new media technologies. This study provides a framework for an electronic voting advisory system that uses machine learning.

Domestic Occupational Therapist Awareness Survey for the Need to Apply Artificial Intelligence Measurement Technology for Clinical Observation Evaluation Based on Sensory Integration (감각통합에 기초한 임상 관찰 평가의 AI 측정 기술 적용 필요성을 위한 국내 작업치료사 인식 조사)

  • Cho, Sun-Young;Jung, Young-Jin;Kim, Jung-Ran
    • Therapeutic Science for Rehabilitation
    • /
    • v.12 no.1
    • /
    • pp.23-35
    • /
    • 2023
  • Objective : This study is to examine the practical use of clinical observational evaluation of sensory integration therapy and the difficulty and importance of measuring results for each sub-item, and through this, to confirm the usefulness of the application of Artificial Intelligence measurement technology in clinical observational measurement and the need for application. Methods : The questionnaire consisted of the actual use of the sensory integration evaluation tool, the difficulty of measurement for each detailed item of clinical observation, the usefulness of AI measurement technology, the importance of evaluation for each detailed item, and the need for developing AI measurement technology. Results : The detailed items that were difficult to measure during clinical observation were the Finger-to-Nose Test and Postural control (71.0%), followed by Eye movement and Protective Extension Test (67.7%). 83.9% of the study subjects answered that it would be useful to apply AI measurement technology when observing images. Postural control (on the ball) (90.3%) was the highest item that answered that AI measurement technology was needed, followed by Eye movement (83.9%), and Prone Extension and Protective Extension Test (77.4%). Conclusion : The results confirmed the desire of therapists that clinical observation is an important evaluation tool in the field of child occupational therapy in Korea.

As how artificial intelligence is revolutionizing endoscopy

  • Jean-Francois Rey
    • Clinical Endoscopy
    • /
    • v.57 no.3
    • /
    • pp.302-308
    • /
    • 2024
  • With incessant advances in information technology and its implications in all domains of our lives, artificial intelligence (AI) has emerged as a requirement for improved machine performance. This brings forth the query of how this can benefit endoscopists and improve both diagnostic and therapeutic endoscopy in each part of the gastrointestinal tract. Additionally, it also raises the question of the recent benefits and clinical usefulness of this new technology in daily endoscopic practice. There are two main categories of AI systems: computer-assisted detection (CADe) for lesion detection and computer-assisted diagnosis (CADx) for optical biopsy and lesion characterization. Quality assurance is the next step in the complete monitoring of high-quality colonoscopies. In all cases, computer-aided endoscopy is used, as the overall results rely on the physician. Video capsule endoscopy is a unique example in which a computer operates a device, stores multiple images, and performs an accurate diagnosis. While there are many expectations, we need to standardize and assess various software packages. It is important for healthcare providers to support this new development and make its use an obligation in daily clinical practice. In summary, AI represents a breakthrough in digestive endoscopy. Screening for gastric and colonic cancer detection should be improved, particularly outside expert centers. Prospective and multicenter trials are mandatory before introducing new software into clinical practice.

Trend of Paradigm for integrating Blockchain, Artificial Intelligence, Quantum Computing, and Internet of Things

  • Rini Wisnu Wardhani;Dedy Septono Catur Putranto;Thi-Thu-Huong Le;Yustus Eko Oktian;Uk Jo;Aji Teguh Prihatno;Naufal Suryanto;Howon Kim
    • Smart Media Journal
    • /
    • v.12 no.2
    • /
    • pp.42-55
    • /
    • 2023
  • The combination of blockchain (BC), artificial Intelligence (AI), quantum computing (QC), and the Internet of Things (IoT) can potentially transform various industries and domains, including healthcare, logistics, and finance. In this paper, we look at the trends and developments in integrating these emerging technologies and the potential benefits and challenges that come with them. We present a conceptual framework for integrating BC, AI, QC, and IoT and discuss the framework's key characteristics and challenges. We also look at the most recent cutting-edge research and developments in integrating these technologies, as well as the key challenges and opportunities that come with them. Our analysis highlights the potential benefits of integrating the technologies and looks to increased security, privacy, and efficiency to provide insights into the future of these technologies.

Research on Core patent mining methods based on key components of Generative AI (생성형 인공지능 기술의 핵심 구성 요소 기반 주요 특허 발굴 방법에 관한 연구)

  • Gayun Kim;Beom-Seok Kim;Jinhong Yang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.292-300
    • /
    • 2023
  • This paper proposes a patent discovery method and strategy for Generative AI-related patents by utilizing qualitative evaluation indicators established based on the core components of the technology. Currently, the evaluation of patent quality relies on quantitative indicators, but existing quantitative indicators cannot represent the characteristics of Generative AI technology, making it difficult to accurately evaluate. Therefore, there is a need for additional qualitative indicators that consider technical characteristics based on patent claims, which can reveal the actual strength of the patent. In this paper, we propose a new evaluation index considering the technical characteristics of Generative AI. Core patents were selected using the proposed evaluation index, and the appropriateness of the proposed index was verified through the existing quantitative evaluation method for the selected core patents.

Updated Primer on Generative Artificial Intelligence and Large Language Models in Medical Imaging for Medical Professionals

  • Kiduk Kim;Kyungjin Cho;Ryoungwoo Jang;Sunggu Kyung;Soyoung Lee;Sungwon Ham;Edward Choi;Gil-Sun Hong;Namkug Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.3
    • /
    • pp.224-242
    • /
    • 2024
  • The emergence of Chat Generative Pre-trained Transformer (ChatGPT), a chatbot developed by OpenAI, has garnered interest in the application of generative artificial intelligence (AI) models in the medical field. This review summarizes different generative AI models and their potential applications in the field of medicine and explores the evolving landscape of Generative Adversarial Networks and diffusion models since the introduction of generative AI models. These models have made valuable contributions to the field of radiology. Furthermore, this review also explores the significance of synthetic data in addressing privacy concerns and augmenting data diversity and quality within the medical domain, in addition to emphasizing the role of inversion in the investigation of generative models and outlining an approach to replicate this process. We provide an overview of Large Language Models, such as GPTs and bidirectional encoder representations (BERTs), that focus on prominent representatives and discuss recent initiatives involving language-vision models in radiology, including innovative large language and vision assistant for biomedicine (LLaVa-Med), to illustrate their practical application. This comprehensive review offers insights into the wide-ranging applications of generative AI models in clinical research and emphasizes their transformative potential.

Artificial Intelligence and College Mathematics Education (인공지능(Artificial Intelligence)과 대학수학교육)

  • Lee, Sang-Gu;Lee, Jae Hwa;Ham, Yoonmee
    • Communications of Mathematical Education
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2020
  • Today's healthcare, intelligent robots, smart home systems, and car sharing are already innovating with cutting-edge information and communication technologies such as Artificial Intelligence (AI), the Internet of Things, the Internet of Intelligent Things, and Big data. It is deeply affecting our lives. In the factory, robots have been working for humans more than several decades (FA, OA), AI doctors are also working in hospitals (Dr. Watson), AI speakers (Giga Genie) and AI assistants (Siri, Bixby, Google Assistant) are working to improve Natural Language Process. Now, in order to understand AI, knowledge of mathematics becomes essential, not a choice. Thus, mathematicians have been given a role in explaining such mathematics that make these things possible behind AI. Therefore, the authors wrote a textbook 'Basic Mathematics for Artificial Intelligence' by arranging the mathematics concepts and tools needed to understand AI and machine learning in one or two semesters, and organized lectures for undergraduate and graduate students of various majors to explore careers in artificial intelligence. In this paper, we share our experience of conducting this class with the full contents in http://matrix.skku.ac.kr/math4ai/.

A Study on the Medical Application and Personal Information Protection of Generative AI (생성형 AI의 의료적 활용과 개인정보보호)

  • Lee, Sookyoung
    • The Korean Society of Law and Medicine
    • /
    • v.24 no.4
    • /
    • pp.67-101
    • /
    • 2023
  • The utilization of generative AI in the medical field is also being rapidly researched. Access to vast data sets reduces the time and energy spent in selecting information. However, as the effort put into content creation decreases, there is a greater likelihood of associated issues arising. For example, with generative AI, users must discern the accuracy of results themselves, as these AIs learn from data within a set period and generate outcomes. While the answers may appear plausible, their sources are often unclear, making it challenging to determine their veracity. Additionally, the possibility of presenting results from a biased or distorted perspective cannot be discounted at present on ethical grounds. Despite these concerns, the field of generative AI is continually advancing, with an increasing number of users leveraging it in various sectors, including biomedical and life sciences. This raises important legal considerations regarding who bears responsibility and to what extent for any damages caused by these high-performance AI algorithms. A general overview of issues with generative AI includes those discussed above, but another perspective arises from its fundamental nature as a large-scale language model ('LLM') AI. There is a civil law concern regarding "the memorization of training data within artificial neural networks and its subsequent reproduction". Medical data, by nature, often reflects personal characteristics of patients, potentially leading to issues such as the regeneration of personal information. The extensive application of generative AI in scenarios beyond traditional AI brings forth the possibility of legal challenges that cannot be ignored. Upon examining the technical characteristics of generative AI and focusing on legal issues, especially concerning the protection of personal information, it's evident that current laws regarding personal information protection, particularly in the context of health and medical data utilization, are inadequate. These laws provide processes for anonymizing and de-identification, specific personal information but fall short when generative AI is applied as software in medical devices. To address the functionalities of generative AI in clinical software, a reevaluation and adjustment of existing laws for the protection of personal information are imperative.