• Title/Summary/Keyword: AI education platform

Search Result 78, Processing Time 0.022 seconds

A Research on Image Metadata Extraction through YCrCb Color Model Analysis for Media Hyper-personalization Recommendation (미디어 초개인화 추천을 위한 YCrCb 컬러 모델 분석을 통한 영상의 메타데이터 추출에 대한 연구)

  • Park, Hyo-Gyeong;Yong, Sung-Jung;You, Yeon-Hwi;Moon, Il-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.277-280
    • /
    • 2021
  • Recently as various contents are mass produced based on high accessibility, the media contents market is more active. Users want to find content that suits their taste, and each platform is competing for personalized recommendations for content. For an efficient recommendation system, high-quality metadata is required. Existing platforms take a method in which the user directly inputs the metadata of an image. This will waste time and money processing large amounts of data. In this paper, for media hyperpersonalization recommendation, keyframes are extracted based on the YCrCb color model of the video based on movie trailers, movie genres are distinguished through supervised learning of artificial intelligence and In the future, we would like to propose a utilization plan for generating metadata.

  • PDF

Method of ChatBot Implementation Using Bot Framework (봇 프레임워크를 활용한 챗봇 구현 방안)

  • Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.56-61
    • /
    • 2022
  • In this paper, we classify and present AI algorithms and natural language processing methods used in chatbots. A framework that can be used to implement a chatbot is also described. A chatbot is a system with a structure that interprets the input string by constructing the user interface in a conversational manner and selects an appropriate answer to the input string from the learned data and outputs it. However, training is required to generate an appropriate set of answers to a question and hardware with considerable computational power is required. Therefore, there is a limit to the practice of not only developing companies but also students learning AI development. Currently, chatbots are replacing the existing traditional tasks, and a practice course to understand and implement the system is required. RNN and Char-CNN are used to increase the accuracy of answering questions by learning unstructured data by applying technologies such as deep learning beyond the level of responding only to standardized data. In order to implement a chatbot, it is necessary to understand such a theory. In addition, the students presented examples of implementation of the entire system by utilizing the methods that can be used for coding education and the platform where existing developers and students can implement chatbots.

A Study on Activation Plan for Logistics Startups in Korea - Focused on Incheon Metropolitan City (물류 스타트업 육성방안에 관한 연구 -인천광역시를 중심으로-)

  • Dong-Joon Kang;Myeong-Hwa Lee;Hyo-Won Kang
    • Korea Trade Review
    • /
    • v.46 no.2
    • /
    • pp.263-280
    • /
    • 2021
  • With the advent of the era of the 4th Industrial Revolution, various support policies and programs are being introduced as the promotion of startups related to the 4th industry is promoted as a core policy of the government. Based on major technologies such as Artificial Intelligence(AI), Big Data, Internet of Things(IoT), Blockchain, and Automation leading the 4th industrial revolution, logistics and distribution companies are expanding the range of markets and services provided. The purpose of this study is to examine the current status of startups in the logistics field based on major technologies of the 4th Industrial Revolution, which are rapidly growing at home and abroad, and suggest implications for revitalizing logistics startups through a policy demand survey. As a result of the study, in order to foster domestic logistics startups, we propose policy support for integration of logistics startups, integrated management of information, provision of physical space, network platform, and practical education and mentoring.

Development of Machine Learning Model Use Cases for Intelligent Internet of Things Technology Education (지능형 사물인터넷 기술 교육을 위한 머신러닝 모델 활용 사례 개발)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.16 no.4
    • /
    • pp.449-457
    • /
    • 2024
  • AIoT, the intelligent Internet of Things, refers to a technology that collects data measured by IoT devices and applies machine learning technology to create and utilize predictive models. Existing research on AIoT technology education focused on building an educational AIoT platform and teaching how to use it. However, there was a lack of case studies that taught the process of automatically creating and utilizing machine learning models from data measured by IoT devices. In this paper, we developed a case study using a machine learning model for AIoT technology education. The case developed in this paper consists of the following steps: data collection from AIoT devices, data preprocessing, automatic creation of machine learning models, calculation of accuracy for each model, determination of valid models, and data prediction using the valid models. In this paper, we considered that sensors in AIoT devices measure different ranges of values, and presented an example of data preprocessing accordingly. In addition, we developed a case where AIoT devices automatically determine what information they can predict by automatically generating several machine learning models and determining effective models with high accuracy among these models. By applying the developed cases, a variety of educational contents using AIoT, such as prediction-based object control using AIoT, can be developed.

A Study on the Information Strategy Planing for the Construction of the Online Information System for the Transaction of Art (미술품 거래정보 온라인 제공시스템 구축을 위한 정보전략계획)

  • Seo, Byeong-Min
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.61-70
    • /
    • 2019
  • The The government has recently announced its mid- to long-term plans for promoting art. With the advent of the 4th industrial revolution, contemporary art contents that are integrated with Intelligent Information Technologies such as Artificial Intelligence (AI), Virtual Reality (VR), and Big Data are being introduced, and social interest in humanities and creative convergence is rising. In addition, the industrialization of the art market is expanding amid the rising popularity of art among the general public and the growing interest of art as an investment replacement system, along with the strengthening of the creative personality education of our Education Ministry. Therefore, it is necessary to establish a strategy for transparency and revitalization of the art market by providing comprehensive information such as search functions, analysis data, and criticism by writer and price. This paper has established an information system plan for the establishment of an online supply system for art transaction information, providing auction transaction information for art market, providing report and news for art market, providing public relations platform, and providing art market analysis service and membership relationship management service. To this end, the future model was established through environmental analysis and focus analysis of the art market, and strategic tasks and implementation plans were established accordingly.

Development of a Sign Language Learning Assistance System using Mediapipe for Sign Language Education of Deaf-Mutility (청각장애인의 수어 교육을 위한 MediaPipe 활용 수어 학습 보조 시스템 개발)

  • Kim, Jin-Young;Sim, Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1355-1362
    • /
    • 2021
  • Recently, not only congenital hearing impairment, but also the number of people with hearing impairment due to acquired factors is increasing. The environment in which sign language can be learned is poor. Therefore, this study intends to present a sign language (sign language number/sign language text) evaluation system as a sign language learning assistance tool for sign language learners. Therefore, in this paper, sign language is captured as an image using OpenCV and Convolutional Neural Network (CNN). In addition, we study a system that recognizes sign language behavior using MediaPipe, converts the meaning of sign language into text-type data, and provides it to users. Through this, self-directed learning is possible so that learners who learn sign language can judge whether they are correct dez. Therefore, we develop a sign language learning assistance system that helps us learn sign language. The purpose is to propose a sign language learning assistance system as a way to support sign language learning, the main language of communication for the hearing impaired.

Application of AI based Chatbot Technology in the Industry

  • Park, Arum;Lee, Sae Bom;Song, Jaemin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.17-25
    • /
    • 2020
  • Based on the successful use of chatbot technology, this study examined what business values each company is creating. The chatbot service contributes to improving the productivity of the company by helping to answer or respond to the questions of employees inside the company or customers. And in the field of education, Instead of instructor, AI technology responds the questions and feedback of the students to reduce the work of the instructor. In the field of commerce, offline stores provide convenient and new purchasing experiences to customers by providing product purchasing services through artificial intelligence speakers and personalization service. Although chatbot service is creating business value in some business cases, it is still limited to the process of a specific company, and the spread rate is still slowing because the service scope, convenience, and usefulness are not greater than expected. Therefore, some chatbot development service providers is providing an integrated development platform to improve usability, Chatbots have the features and advantages of providing convenience instead of answering human questions. However, there is a disadvantage that the level of communication can be lowered by reducing various human subjective views and giving mainly objective answers. Through this study, we will discuss the characteristics, advantages and disadvantages of chatbot services by comparing them.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.