• Title/Summary/Keyword: AI dataset

Search Result 256, Processing Time 0.024 seconds

Multi-Object Goal Visual Navigation Based on Multimodal Context Fusion (멀티모달 맥락정보 융합에 기초한 다중 물체 목표 시각적 탐색 이동)

  • Jeong Hyun Choi;In Cheol Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.407-418
    • /
    • 2023
  • The Multi-Object Goal Visual Navigation(MultiOn) is a visual navigation task in which an agent must visit to multiple object goals in an unknown indoor environment in a given order. Existing models for the MultiOn task suffer from the limitation that they cannot utilize an integrated view of multimodal context because use only a unimodal context map. To overcome this limitation, in this paper, we propose a novel deep neural network-based agent model for MultiOn task. The proposed model, MCFMO, uses a multimodal context map, containing visual appearance features, semantic features of environmental objects, and goal object features. Moreover, the proposed model effectively fuses these three heterogeneous features into a global multimodal context map by using a point-wise convolutional neural network module. Lastly, the proposed model adopts an auxiliary task learning module to predict the observation status, goal direction and the goal distance, which can guide to learn the navigational policy efficiently. Conducting various quantitative and qualitative experiments using the Habitat-Matterport3D simulation environment and scene dataset, we demonstrate the superiority of the proposed model.

Assessment of Visual Landscape Image Analysis Method Using CNN Deep Learning - Focused on Healing Place - (CNN 딥러닝을 활용한 경관 이미지 분석 방법 평가 - 힐링장소를 대상으로 -)

  • Sung, Jung-Han;Lee, Kyung-Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.166-178
    • /
    • 2023
  • This study aims to introduce and assess CNN Deep Learning methods to analyze visual landscape images on social media with embedded user perceptions and experiences. This study analyzed visual landscape images by focusing on a healing place. For the study, seven adjectives related to healing were selected through text mining and consideration of previous studies. Subsequently, 50 evaluators were recruited to build a Deep Learning image. Evaluators were asked to collect three images most suitable for 'healing', 'healing landscape', and 'healing place' on portal sites. The collected images were refined and a data augmentation process was applied to build a CNN model. After that, 15,097 images of 'healing' and 'healing landscape' on portal sites were collected and classified to analyze the visual landscape of a healing place. As a result of the study, 'quiet' was the highest in the category except 'other' and 'indoor' with 2,093 (22%), followed by 'open', 'joyful', 'comfortable', 'clean', 'natural', and 'beautiful'. It was found through research that CNN Deep Learning is an analysis method that can derive results from visual landscape image analysis. It also suggested that it is one way to supplement the existing visual landscape analysis method, and suggests in-depth and diverse visual landscape analysis in the future by establishing a landscape image learning dataset.

A School-tailored High School Integrated Science Q&A Chatbot with Sentence-BERT: Development and One-Year Usage Analysis (인공지능 문장 분류 모델 Sentence-BERT 기반 학교 맞춤형 고등학교 통합과학 질문-답변 챗봇 -개발 및 1년간 사용 분석-)

  • Gyeongmo Min;Junehee Yoo
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.3
    • /
    • pp.231-248
    • /
    • 2024
  • This study developed a chatbot for first-year high school students, employing open-source software and the Korean Sentence-BERT model for AI-powered document classification. The chatbot utilizes the Sentence-BERT model to find the six most similar Q&A pairs to a student's query and presents them in a carousel format. The initial dataset, built from online resources, was refined and expanded based on student feedback and usability throughout over the operational period. By the end of the 2023 academic year, the chatbot integrated a total of 30,819 datasets and recorded 3,457 student interactions. Analysis revealed students' inclination to use the chatbot when prompted by teachers during classes and primarily during self-study sessions after school, with an average of 2.1 to 2.2 inquiries per session, mostly via mobile phones. Text mining identified student input terms encompassing not only science-related queries but also aspects of school life such as assessment scope. Topic modeling using BERTopic, based on Sentence-BERT, categorized 88% of student questions into 35 topics, shedding light on common student interests. A year-end survey confirmed the efficacy of the carousel format and the chatbot's role in addressing curiosities beyond integrated science learning objectives. This study underscores the importance of developing chatbots tailored for student use in public education and highlights their educational potential through long-term usage analysis.

Class-Agnostic 3D Mask Proposal and 2D-3D Visual Feature Ensemble for Efficient Open-Vocabulary 3D Instance Segmentation (효율적인 개방형 어휘 3차원 개체 분할을 위한 클래스-독립적인 3차원 마스크 제안과 2차원-3차원 시각적 특징 앙상블)

  • Sungho Song;Kyungmin Park;Incheol Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.7
    • /
    • pp.335-347
    • /
    • 2024
  • Open-vocabulary 3D point cloud instance segmentation (OV-3DIS) is a challenging visual task to segment a 3D scene point cloud into object instances of both base and novel classes. In this paper, we propose a novel model Open3DME for OV-3DIS to address important design issues and overcome limitations of the existing approaches. First, in order to improve the quality of class-agnostic 3D masks, our model makes use of T3DIS, an advanced Transformer-based 3D point cloud instance segmentation model, as mask proposal module. Second, in order to obtain semantically text-aligned visual features of each point cloud segment, our model extracts both 2D and 3D features from the point cloud and the corresponding multi-view RGB images by using pretrained CLIP and OpenSeg encoders respectively. Last, to effectively make use of both 2D and 3D visual features of each point cloud segment during label assignment, our model adopts a unique feature ensemble method. To validate our model, we conducted both quantitative and qualitative experiments on ScanNet-V2 benchmark dataset, demonstrating significant performance gains.

Aspect-Based Sentiment Analysis Using BERT: Developing Aspect Category Sentiment Classification Models (BERT를 활용한 속성기반 감성분석: 속성카테고리 감성분류 모델 개발)

  • Park, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.1-25
    • /
    • 2020
  • Sentiment Analysis (SA) is a Natural Language Processing (NLP) task that analyzes the sentiments consumers or the public feel about an arbitrary object from written texts. Furthermore, Aspect-Based Sentiment Analysis (ABSA) is a fine-grained analysis of the sentiments towards each aspect of an object. Since having a more practical value in terms of business, ABSA is drawing attention from both academic and industrial organizations. When there is a review that says "The restaurant is expensive but the food is really fantastic", for example, the general SA evaluates the overall sentiment towards the 'restaurant' as 'positive', while ABSA identifies the restaurant's aspect 'price' as 'negative' and 'food' aspect as 'positive'. Thus, ABSA enables a more specific and effective marketing strategy. In order to perform ABSA, it is necessary to identify what are the aspect terms or aspect categories included in the text, and judge the sentiments towards them. Accordingly, there exist four main areas in ABSA; aspect term extraction, aspect category detection, Aspect Term Sentiment Classification (ATSC), and Aspect Category Sentiment Classification (ACSC). It is usually conducted by extracting aspect terms and then performing ATSC to analyze sentiments for the given aspect terms, or by extracting aspect categories and then performing ACSC to analyze sentiments for the given aspect category. Here, an aspect category is expressed in one or more aspect terms, or indirectly inferred by other words. In the preceding example sentence, 'price' and 'food' are both aspect categories, and the aspect category 'food' is expressed by the aspect term 'food' included in the review. If the review sentence includes 'pasta', 'steak', or 'grilled chicken special', these can all be aspect terms for the aspect category 'food'. As such, an aspect category referred to by one or more specific aspect terms is called an explicit aspect. On the other hand, the aspect category like 'price', which does not have any specific aspect terms but can be indirectly guessed with an emotional word 'expensive,' is called an implicit aspect. So far, the 'aspect category' has been used to avoid confusion about 'aspect term'. From now on, we will consider 'aspect category' and 'aspect' as the same concept and use the word 'aspect' more for convenience. And one thing to note is that ATSC analyzes the sentiment towards given aspect terms, so it deals only with explicit aspects, and ACSC treats not only explicit aspects but also implicit aspects. This study seeks to find answers to the following issues ignored in the previous studies when applying the BERT pre-trained language model to ACSC and derives superior ACSC models. First, is it more effective to reflect the output vector of tokens for aspect categories than to use only the final output vector of [CLS] token as a classification vector? Second, is there any performance difference between QA (Question Answering) and NLI (Natural Language Inference) types in the sentence-pair configuration of input data? Third, is there any performance difference according to the order of sentence including aspect category in the QA or NLI type sentence-pair configuration of input data? To achieve these research objectives, we implemented 12 ACSC models and conducted experiments on 4 English benchmark datasets. As a result, ACSC models that provide performance beyond the existing studies without expanding the training dataset were derived. In addition, it was found that it is more effective to reflect the output vector of the aspect category token than to use only the output vector for the [CLS] token as a classification vector. It was also found that QA type input generally provides better performance than NLI, and the order of the sentence with the aspect category in QA type is irrelevant with performance. There may be some differences depending on the characteristics of the dataset, but when using NLI type sentence-pair input, placing the sentence containing the aspect category second seems to provide better performance. The new methodology for designing the ACSC model used in this study could be similarly applied to other studies such as ATSC.

Identification of Characteristics and Risk Factors Associated with Mortality in Hydrops Fetalis (태아수종의 특성 및 사망률과 연관된 위험인자)

  • Ko, Hoon;Lee, Byong-Sop;Kim, Ki-Soo;Won, Hye-Sung;Lee, Pil-Ryang;Shim, Jae-Yoon;Kim, Ahm;Kim, Ai-Rhan
    • Neonatal Medicine
    • /
    • v.18 no.2
    • /
    • pp.221-227
    • /
    • 2011
  • Purpose: The objectives were to identify the characteristics of neonates with hydrops fetalis, and to identify the risk factors associated with mortality. Methods: A retrospective review of AMC (Asan Medical Center) dataset was performed from January 1990 to June 2009. The characteristics of 71 patients with hydrops fetalis were investigated and they were divided into two groups: the survived group and the expired group. Various perinatal and neonatal factors in two groups were compared to find out risk factors associated with mortality based on univariate analysis, followed by multiple regression analyses (SPSS version 18.0). Results: Of those 71 neonates (average gestational age: 33 weeks, birth weight: 2.6 kg), 38 survived, 33 died, resulting in overall mortality rate of 46.5%. The most common etiology was idiopathic followed by chylothorax, cardiac anomalies, twin-to-twin transfusion, meconium peritonitis, cardiac arrythmias, and congenital infections. Factors that were associated independently with mortality in logistic regression analyses were low 5-minutes Apgar score, hyaline membrane disease and delayed in achieving 50th percentile ideal body weight for appropriate gestational age by 10 days. Conclusion: In this study, 5-minutes Apgar score, hyaline membrane disease and delayed in achieving 50th percentile ideal body weight for appropriate gestational age by 10 days were significant risk factors associated with mortality in hydrops fetalis. Therefore, the risk of death among neonates with hydrops fetalis depends on the illness immediately after birth and severity of hydrops fetalis. Informations from this study may prove useful in prediction of prognosis to neonates with hydrops fetalis.