• Title/Summary/Keyword: AI data framework

Search Result 100, Processing Time 0.037 seconds

Research study on cognitive IoT platform for fog computing in industrial Internet of Things (산업용 사물인터넷에서 포그 컴퓨팅을 위한 인지 IoT 플랫폼 조사연구)

  • Sunghyuck Hong
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.69-75
    • /
    • 2024
  • This paper proposes an innovative cognitive IoT framework specifically designed for fog computing (FC) in the context of industrial Internet of Things (IIoT). The discourse in this paper is centered on the intricate design and functional architecture of the Cognitive IoT platform. A crucial feature of this platform is the integration of machine learning (ML) and artificial intelligence (AI), which enhances its operational flexibility and compatibility with a wide range of industrial applications. An exemplary application of this platform is highlighted through the Predictive Maintenance-as-a-Service (PdM-as-a-Service) model, which focuses on real-time monitoring of machine conditions. This model transcends traditional maintenance approaches by leveraging real-time data analytics for maintenance and management operations. Empirical results substantiate the platform's effectiveness within a fog computing milieu, thereby illustrating its transformative potential in the domain of industrial IoT applications. Furthermore, the paper delineates the inherent challenges and prospective research trajectories in the spheres of Cognitive IoT and Fog Computing within the ambit of Industrial Internet of Things (IIoT).

Effects of CEO's Self-Determination on Start-up Entrepreneurship and Business Performance in Service and Distribution SMEs

  • SHIN, Hyang-Sook;BAE, Jee-Eun
    • The Korean Journal of Franchise Management
    • /
    • v.11 no.4
    • /
    • pp.31-44
    • /
    • 2020
  • Purpose: The purpose of this study is to examine the effects of CEO's self-determination on entrepreneurship, business performance (operational and financial performance). Also, this research provide some strategic insights for improving business performance. In the proposed model, self-determination consists of autonomy, competence, and relatedness, and entrepreneurship consists of innovation, initiative and risk sensitivity, and proactiveness. More specifically, this study proposes a framework that entrepreneurship and operational performance will play mediating roles between self-determination and financial performance. Research design, data, methodology: In this study, an online survey was conducted on SME CEOs for analysis, and a total of 122 samples were used. In the analysis process for hypothesis verification and evaluation, frequency analysis was first performed to identify the demographic characteristics of the respondents, and confirmatory factor analysis was conducted to assess the reliability and validity of the measurement model. In addition, a structural model analysis was conducted to examine the structural relationships between CEO's self-determination, entrepreneurship, and business performance (operational and financial performance) using SmartPLS 3.0. Results: The findings and summary are as follows. First, the autonomy of self-determination has a positive effect on entrepreneurship. Second, the competence of self-determination affects entrepreneurship and operational performance. Third, it affects the innovation, initiative and risk sensitivity of the CEO's entrepreneurship, and ultimately, its operational performance. The results show that the business performance of Start-up also increases when self-determination can be a factor in increasing entrepreneurship in three sub-dimensionalities. Conclusions: The conclusion of this study is that in order for SMEs to develop into a sustainable company by securing competitiveness after start-up, external motivation such as external help and support from the state (local government) is important, but competence and relationship, which are components of self-determination. The intrinsic motivation of the CEO may be more important. To this end, CEO's should prioritize learning for competency development, and the government should pay attention to providing various educational programs through establishment of education policies and education systems to enhance the competency of start-up CEO's.

Blockchain Technology for Combating Deepfake and Protect Video/Image Integrity

  • Rashid, Md Mamunur;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1044-1058
    • /
    • 2021
  • Tempered electronic contents have multiplied in last few years, thanks to the emergence of sophisticated artificial intelligence(AI) algorithms. Deepfakes (fake footage, photos, speech, and videos) can be a frightening and destructive phenomenon that has the capacity to distort the facts and hamper reputation by presenting a fake reality. Evidence of ownership or authentication of digital material is crucial for combating the fabricated content influx we are facing today. Current solutions lack the capacity to track digital media's history and provenance. Due to the rise of misrepresentation created by technologies like deepfake, detection algorithms are required to verify the integrity of digital content. Many real-world scenarios have been claimed to benefit from blockchain's authentication capabilities. Despite the scattered efforts surrounding such remedies, relatively little research has been undertaken to discover where blockchain technology can be used to tackle the deepfake problem. Latest blockchain based innovations such as Smart Contract, Hyperledger fabric can play a vital role against the manipulation of digital content. The goal of this paper is to summarize and discuss the ongoing researches related to blockchain's capabilities to protect digital content authentication. We have also suggested a blockchain (smart contract) dependent framework that can keep the data integrity of original content and thus prevent deepfake. This study also aims at discussing how blockchain technology can be used more effectively in deepfake prevention as well as highlight the current state of deepfake video detection research, including the generating process, various detection algorithms, and existing benchmarks.

Design of weighted federated learning framework based on local model validation

  • Kim, Jung-Jun;Kang, Jeon Seong;Chung, Hyun-Joon;Park, Byung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.13-18
    • /
    • 2022
  • In this paper, we proposed VW-FedAVG(Validation based Weighted FedAVG) which updates the global model by weighting according to performance verification from the models of each device participating in the training. The first method is designed to validate each local client model through validation dataset before updating the global model with a server side validation structure. The second is a client-side validation structure, which is designed in such a way that the validation data set is evenly distributed to each client and the global model is after validation. MNIST, CIFAR-10 is used, and the IID, Non-IID distribution for image classification obtained higher accuracy than previous studies.

Design of a Mirror for Fragrance Recommendation based on Personal Emotion Analysis (개인의 감성 분석 기반 향 추천 미러 설계)

  • Hyeonji Kim;Yoosoo Oh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.4
    • /
    • pp.11-19
    • /
    • 2023
  • The paper proposes a smart mirror system that recommends fragrances based on user emotion analysis. This paper combines natural language processing techniques such as embedding techniques (CounterVectorizer and TF-IDF) and machine learning classification models (DecisionTree, SVM, RandomForest, SGD Classifier) to build a model and compares the results. After the comparison, the paper constructs a personal emotion-based fragrance recommendation mirror model based on the SVM and word embedding pipeline-based emotion classifier model with the highest performance. The proposed system implements a personalized fragrance recommendation mirror based on emotion analysis, providing web services using the Flask web framework. This paper uses the Google Speech Cloud API to recognize users' voices and use speech-to-text (STT) to convert voice-transcribed text data. The proposed system provides users with information about weather, humidity, location, quotes, time, and schedule management.

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF

Intelligent Transportation System (ITS) research optimized for autonomous driving using edge computing (엣지 컴퓨팅을 이용하여 자율주행에 최적화된 지능형 교통 시스템 연구(ITS))

  • Sunghyuck Hong
    • Advanced Industrial SCIence
    • /
    • v.3 no.1
    • /
    • pp.23-29
    • /
    • 2024
  • In this scholarly investigation, the focus is placed on the transformative potential of edge computing in enhancing Intelligent Transportation Systems (ITS) for the facilitation of autonomous driving. The intrinsic capability of edge computing to process voluminous datasets locally and in a real-time manner is identified as paramount in meeting the exigent requirements of autonomous vehicles, encompassing expedited decision-making processes and the bolstering of safety protocols. This inquiry delves into the synergy between edge computing and extant ITS infrastructures, elucidating the manner in which localized data processing can substantially diminish latency, thereby augmenting the responsiveness of autonomous vehicles. Further, the study scrutinizes the deployment of edge servers, an array of sensors, and Vehicle-to-Everything (V2X) communication technologies, positing these elements as constituents of a robust framework designed to support instantaneous traffic management, collision avoidance mechanisms, and the dynamic optimization of vehicular routes. Moreover, this research addresses the principal challenges encountered in the incorporation of edge computing within ITS, including issues related to security, the integration of data, and the scalability of systems. It proffers insights into viable solutions and delineates directions for future scholarly inquiry.

Knowledge Extraction Methodology and Framework from Wikipedia Articles for Construction of Knowledge-Base (지식베이스 구축을 위한 한국어 위키피디아의 학습 기반 지식추출 방법론 및 플랫폼 연구)

  • Kim, JaeHun;Lee, Myungjin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.43-61
    • /
    • 2019
  • Development of technologies in artificial intelligence has been rapidly increasing with the Fourth Industrial Revolution, and researches related to AI have been actively conducted in a variety of fields such as autonomous vehicles, natural language processing, and robotics. These researches have been focused on solving cognitive problems such as learning and problem solving related to human intelligence from the 1950s. The field of artificial intelligence has achieved more technological advance than ever, due to recent interest in technology and research on various algorithms. The knowledge-based system is a sub-domain of artificial intelligence, and it aims to enable artificial intelligence agents to make decisions by using machine-readable and processible knowledge constructed from complex and informal human knowledge and rules in various fields. A knowledge base is used to optimize information collection, organization, and retrieval, and recently it is used with statistical artificial intelligence such as machine learning. Recently, the purpose of the knowledge base is to express, publish, and share knowledge on the web by describing and connecting web resources such as pages and data. These knowledge bases are used for intelligent processing in various fields of artificial intelligence such as question answering system of the smart speaker. However, building a useful knowledge base is a time-consuming task and still requires a lot of effort of the experts. In recent years, many kinds of research and technologies of knowledge based artificial intelligence use DBpedia that is one of the biggest knowledge base aiming to extract structured content from the various information of Wikipedia. DBpedia contains various information extracted from Wikipedia such as a title, categories, and links, but the most useful knowledge is from infobox of Wikipedia that presents a summary of some unifying aspect created by users. These knowledge are created by the mapping rule between infobox structures and DBpedia ontology schema defined in DBpedia Extraction Framework. In this way, DBpedia can expect high reliability in terms of accuracy of knowledge by using the method of generating knowledge from semi-structured infobox data created by users. However, since only about 50% of all wiki pages contain infobox in Korean Wikipedia, DBpedia has limitations in term of knowledge scalability. This paper proposes a method to extract knowledge from text documents according to the ontology schema using machine learning. In order to demonstrate the appropriateness of this method, we explain a knowledge extraction model according to the DBpedia ontology schema by learning Wikipedia infoboxes. Our knowledge extraction model consists of three steps, document classification as ontology classes, proper sentence classification to extract triples, and value selection and transformation into RDF triple structure. The structure of Wikipedia infobox are defined as infobox templates that provide standardized information across related articles, and DBpedia ontology schema can be mapped these infobox templates. Based on these mapping relations, we classify the input document according to infobox categories which means ontology classes. After determining the classification of the input document, we classify the appropriate sentence according to attributes belonging to the classification. Finally, we extract knowledge from sentences that are classified as appropriate, and we convert knowledge into a form of triples. In order to train models, we generated training data set from Wikipedia dump using a method to add BIO tags to sentences, so we trained about 200 classes and about 2,500 relations for extracting knowledge. Furthermore, we evaluated comparative experiments of CRF and Bi-LSTM-CRF for the knowledge extraction process. Through this proposed process, it is possible to utilize structured knowledge by extracting knowledge according to the ontology schema from text documents. In addition, this methodology can significantly reduce the effort of the experts to construct instances according to the ontology schema.

USN's Efforts to Rebuild its Combat Power in an Era of Great Power Competition (강대국 간의 경쟁시대와 미 해군의 증강 노력)

  • Jung, Ho-Sub
    • Strategy21
    • /
    • s.44
    • /
    • pp.5-27
    • /
    • 2018
  • The purpose of this paper is to look at USN's efforts to rebuild its combat power in the face of a reemergence of great powers competition, and to propose some recommendations for the ROKN. In addition to the plan to augment its fleet towards a 355-ships capacity, the USN is pursuing to improve exponentially combat lethality(quality) of its existing fleet by means of innovative science and technology. In other words, the USN is putting its utmost efforts to improve readiness of current forces, to modernize maintenance facilities such as naval shipyards, and simultaneously to invest in innovative weapons system R&D for the future. After all, the USN seems to pursue innovations in advanced military Science & Technology as the best way to ensure continued supremacy in the coming strategic competition between great powers. However, it is to be seen whether the USN can smoothly continue these efforts to rebuild combat strength vis-a-vis its new competition peers, namely China and Russian navy, due to the stringent fiscal constraints, originating, among others, from the 2011 Budget Control Act effective yet. Then, it seems to be China's unilateral and assertive behaviors to expand its maritime jurisdiction in the South China Sea that drives the USN's rebuild-up efforts of the future. Now, some changes began to be perceived in the basic framework of the hitherto regional maritime security, in the name of declining sea control of the USN as well as withering maritime order based on international law and norms. However, the ROK-US alliance system is the most excellent security mechanism upon which the ROK, as a trading power, depends for its survival and prosperity. In addition, as denuclearization of North Korea seems to take significant time and efforts to accomplish in the years to come, nuclear umbrella and extended deterrence by the US is still noting but indispensible for the security of the ROK. In this connection, the naval cooperation between ROKN and USN should be seen and strengthened as the most important deterrents to North Korean nuclear and missile threats, as well as to potential maritime provocation by neighboring countries. Based on these observations, this paper argues that the ROK Navy should try to expand its own deterrent capability by pursuing selective technological innovation in order to prevent this country's destiny from being dictated by other powers. In doing so, however, it may be too risky for the ROK to pursue the emerging, disruptive innovative technologies such as rail gun, hypersonic weapon... etc., due to enormous budget, time, and very thin chance of success. This paper recommends, therefore, to carefully select and extensively invest on the most cost-effective technological innovations, suitable in the operational environments of the ROK. In particular, this paper stresses the following six areas as most potential naval innovations for the ROK Navy: long range precision strike; air and missile defense at sea; ASW with various unmanned maritime system (UMS) such as USV, UUV based on advanced hydraulic acoustic sensor (Sonar) technology; network; digitalization for the use of AI and big data; and nuclear-powered attack submarines as a strategic deterrent.

A Study on the Influence of IT Education Service Quality on Educational Satisfaction, Work Application Intention, and Recommendation Intention: Focusing on the Moderating Effects of Learner Position and Participation Motivation (IT교육 서비스품질이 교육만족도, 현업적용의도 및 추천의도에 미치는 영향에 관한 연구: 학습자 직위 및 참여동기의 조절효과를 중심으로)

  • Kang, Ryeo-Eun;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.169-196
    • /
    • 2017
  • The fourth industrial revolution represents a revolutionary change in the business environment and its ecosystem, which is a fusion of Information Technology (IT) and other industries. In line with these recent changes, the Ministry of Employment and Labor of South Korea announced 'the Fourth Industrial Revolution Leader Training Program,' which includes five key support areas such as (1) smart manufacturing, (2) Internet of Things (IoT), (3) big data including Artificial Intelligence (AI), (4) information security, and (5) bio innovation. Based on this program, we can get a glimpse of the South Korean government's efforts and willingness to emit leading human resource with advanced IT knowledge in various fusion technology-related and newly emerging industries. On the other hand, in order to nurture excellent IT manpower in preparation for the fourth industrial revolution, the role of educational institutions capable of providing high quality IT education services is most of importance. However, these days, most IT educational institutions have had difficulties in providing customized IT education services that meet the needs of consumers (i.e., learners), without breaking away from the traditional framework of providing supplier-oriented education services. From previous studies, it has been found that the provision of customized education services centered on learners leads to high satisfaction of learners, and that higher satisfaction increases not only task performance and the possibility of business application but also learners' recommendation intention. However, since research has not yet been conducted in a comprehensive way that consider both antecedent and consequent factors of the learner's satisfaction, more empirical research on this is highly desirable. With the advent of the fourth industrial revolution, a rising interest in various convergence technologies utilizing information technology (IT) has brought with the growing realization of the important role played by IT-related education services. However, research on the role of IT education service quality in the context of IT education is relatively scarce in spite of the fact that research on general education service quality and satisfaction has been actively conducted in various contexts. In this study, therefore, the five dimensions of IT education service quality (i.e., tangibles, reliability, responsiveness, assurance, and empathy) are derived from the context of IT education, based on the SERVPERF model and related previous studies. In addition, the effects of these detailed IT education service quality factors on learners' educational satisfaction and their work application/recommendation intentions are examined. Furthermore, the moderating roles of learner position (i.e., practitioner group vs. manager group) and participation motivation (i.e., voluntary participation vs. involuntary participation) in relationships between IT education service quality factors and learners' educational satisfaction, work application intention, and recommendation intention are also investigated. In an analysis using the structural equation model (SEM) technique based on a questionnaire given to 203 participants of IT education programs in an 'M' IT educational institution in Seoul, South Korea, tangibles, reliability, and assurance were found to have a significant effect on educational satisfaction. This educational satisfaction was found to have a significant effect on both work application intention and recommendation intention. Moreover, it was discovered that learner position and participation motivation have a partial moderating impact on the relationship between IT education service quality factors and educational satisfaction. This study holds academic implications in that it is one of the first studies to apply the SERVPERF model (rather than the SERVQUAL model, which has been widely adopted by prior studies) is to demonstrate the influence of IT education service quality on learners' educational satisfaction, work application intention, and recommendation intention in an IT education environment. The results of this study are expected to provide practical guidance for IT education service providers who wish to enhance learners' educational satisfaction and service management efficiency.