본 연구에서는 루프 센서를 통한 교통량 수집방식의 오류를 해결하기 위해 1종(승용차)과 3종(일반 트럭)의 구분이 어려운 부분 및 영상 이미지의 단점을 보완하기 위해 도로변에 열화상 카메라를 설치하여 영상 이미지를 수집하였다. 수집된 영상 이미지를 레이블링 단계를 거쳐 1종(승용차)과 3종(일반 트럭)의 학습데이터를 구성하였다. 정지영상을 대상으로 labeling을 진행하였으며, 총 17,536대의 차량 이미지(640x480 pixel)에 대해 시행하였다. 열화상 영상 기반의 차종 분류를 달성하기 위해 CNN(Convolutional Neural Network)을 이용하였으며, 제한적인 데이터량과 품질에도 불구하고 97.7%의 분류정확도를 나타내었다. 이는 AI 영상인식 기반의 도로 교통량 데이터 수집 가능성을 보여주는 것이라 판단되며, 향후 더욱더 많은 학습데이터를 축적한다면 12종 차종 분류가 가능할 것이다. 또한, AI 기반 영상인식으로 도로 교통량의 12종 차종뿐만 아니라 다양한(친환경 차량, 도로 법규 위반차량, 이륜자동차 등) 차종 분류를 할 수 있을 것이며, 이는 국가정책, 연구, 산업 등의 통계 데이터로 활용도가 높을 것으로 판단된다.
International Journal of Internet, Broadcasting and Communication
/
제13권4호
/
pp.121-128
/
2021
In order to design a real time big data collection and analysis system of manufacturing data in a smart factory, it is important to establish an appropriate wired/wireless communication system and protocol. This paper introduces the latest communication protocol, OPC-UA (Open Platform Communication Unified Architecture) based client/server function, applied user interface technology to configure a network for real-time data collection through IoT Integration. Then, Database is designed in MES (Manufacturing Execution System) based on the analysis table that reflects the user's requirements among the data extracted from the new cutting process automation process, bush inner diameter indentation measurement system and tool monitoring/inspection system. In summary, big data analysis system introduced in this paper performs SPC (statistical Process Control) analysis and visualization analysis with interface of OPC-UA-based wired/wireless communication. Through AI learning modeling with XGBoost (eXtream Gradient Boosting) and LR (Linear Regression) algorithm, quality and visualization analysis is carried out the storage and connection to the cloud.
본 연구에서는 5G 네트워크용 UAV(: Unmanned Aerial Vehicle)를 사용한 산업단지 내의 현장 상황을 실시간 감시하는 시스템에 대해 소개한다. UAV에 장착된 센서(화재, 유해가스 검출, 산업 재해형 인체 사고 감지)에서 모니터링 이벤트가 발생하면 센서의 주요 정보들이 UAS(: Unmanned Aerial System)애플리케이션 서버로 전달한다. 이러한 정보 전달 처리결과로, 산업단지공단의 관리자나 운영자는 사고 위험 상황별 트리거 처리를 통한 산업단지공단 내의 현장에서 인명사고와 화재, 그리고 유해 가스검출에 대한 법적인 근거 자료를 확보할 수 있게 되었다.
해상 부이는 항로 및 위험물 표지, 기상 및 해양 환경 모니터링, 군사 전략 요소 등 다양한 목적으로 운용되는 설비이다. 이러한 해상 부이가 선박 충돌 등으로 인해 손상되면 해양이라는 특수성으로 인해 복구 및 교체 작업에 많은 시간과 비용이 소요되며, 표류 시 2차 사고의 위험성이 존재한다. 본 논문에서는 이러한 해상 부이를 보호하기 위하여 트레일 카메라 및 AIS를 활용한 능동감시 및 접근경보 시스템의 개발에 관한 내용을 다룬다. 이러한 시스템의 개발을 위하여 기존 국내외 연구 및 유사 시스템 개발 사례를 분석한 후, 개선 요구사항을 도출하고, 도출된 내용을 바탕으로 시스템을 설계한다. 설계 시 주안점을 둔 내용으로는 AIS와 트레일 카메라 연계형 능동 감시, 선박 접근에 대한 단계별 경보, 육상과 부이의 거리에 따른 선택적 통신매체 적용, 영상 처리를 통한 선박 식별 및 경보 제공, 열화상 카메라의 적용 등 크게 다섯 가지가 있다. 또한, 설계된 내용을 바탕으로 시스템을 개발하고, 실험실 혹은 필드 수준의 테스트를 통해 개발한 시스템의 유용성을 검증한다.
Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
국제학술발표논문집
/
The 9th International Conference on Construction Engineering and Project Management
/
pp.1243-1244
/
2022
In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.
Journal of Advanced Marine Engineering and Technology
/
제38권1호
/
pp.56-63
/
2014
해양플랜트는 태풍, 해일 등과 같은 환경적인 요소와 충돌, 화재 등의 인공적인 요소에 의해 위험에 노출되어 있기 때문에 일반적인 선박에 비해 유지보수 비용이 높으며 사고 발생 시, 빠른 대응이 어려워 관리적 측면에서 어려움이 많다. 이 논문에서는 이러한 문제를 개선하고 해양플랜트를 관제하기위해 AtoN AIS, 다단 데이터베이스를 활용한 영상복합형 해양플랜트 원격 관제 시스템을 개발한다. 개발한 시스템은 카메라 및 AIS를 이용하여 실시간으로 해양플랜트 주변의 영상 및 환경 정보를 수집하여 VHF 무선 통신 모뎀을 통해 전송하고, 육상에서 이를 수신하여 전자해도 기반의 원격 관제 어플리케이션을 통해 해양플랜트 주변의 상황을 정확하게 판단할 수 있게 해주며, 다단 데이터베이스를 이용하여 여러 정보를 효율적으로 관리할 수 있도록 해준다.
본 연구에서는 도로 포장 유지관리에 필요한 핵심정보를 생산해 낼 수 있는 저비용·고효율 포장상태 모니터링 기술을 개발하고자 하였다. 특히 시각정보와 고가 센서에 의존하는 기존 장비의 단점을 보완하기 위해 소음과 인공지능 기반의 포장상태등급 평가시스템을 고안하였다. 시스템 개발을 위한 아이디어 정립부터 기능 정의, 정보흐름 및 아키텍쳐 설계 과정을 거쳤으며, 생산된 프로토타입에 대한 성능 검증과 활용 전주기에 대한 실증 평가를 수행하였다. 그 결과, 높은 수준의 인공지능 평가 신뢰도가 확보되었으며, 하드웨어와 소프트웨어적 요소 외에도 시스템 활용에 관한 짜임새 있는 가이드라인이 개발되었다. 또한 현장평가 과정을 통해 비전문가도 쉽고 빠른 조사와 분석이 가능하고, 직관적인 시각적 정보 제공을 통해 관리자의 업무 지원이 가능함도 확인하였다. 반면에 학습에 고려되지 않은 외부 조건에 대한 선행 판별 기술, 시스템 간소화, 가변 주행속도 대응 기술 등 기술의 완성도 제고도 필요함을 알 수 있었다. 본 연구를 시작으로 1960년대 이후 반세기 이상 지속되어온 포장상태 모니터링 기술의 새로운 패러다임이 제시되길 기대한다.
최근 COVID-19와 같은 신종 바이러스 감염증이 확산하여 심각한 공중 보건 문제를 제기하고 있다. 특히 이러한 질병은 고령자에게 치명적으로 작용하여, 생명을 위협하고 심각한 사회적, 경제적 손실을 초래하였다. 이에 많은 산업분야에서 사물 인터넷(IoT) 및 인공 지능(AI)을 응용한 원격진료, 헬스케어, 질병예방 등의 애플리케이션이 소개되어 질병 감지, 모니터링 및 검역 성능을 향상하고 있다. 하지만 기존기술은 갑작스러운 전염병의 출현에 신속하고 통합적으로 적용되지 않기 때문에, 사회 속에 감염병이 대규모 감염 및 전국적 확산되는 것을 차단하지 못하였다. 따라서 본 논문에서는 바이러스 질병 정보 수집기를 통해 지역적 한계가 있는 다양한 감염 정보를 수집하고, AI 브로커를 통해 AI 분석 및 심각도 매칭을 수행하여 감염의 확산을 예측하고자 한다. 최종에는 질병관리본부를 통해 고령자에게 위험경보 발령, 확산 차단 문자 발송 및 감염지역 대피정보를 신속하게 제공한다. 현실적인 고령자 지원시스템은 감염자 발생지역 정보와 고령자의 위치정보를 비교하여 증강현실 기반의 스마트폰 애플리케이션으로 직관적인 위험지역(감염지역) 회피기능을 제공하고 감염지역 방문이 확인되면 자동으로 방역관리 서비스를 제공한다. 향후 제안시스템은 위치기반의 사용자 밀집도를 파악함으로써 갑작스런 인파 집중으로 인한 압사 사고를 사전에 예방하는 방법으로도 활용 가능할 것이다.
연구목적: 최근 국가 산업단지 안전시설물의 노후화로 안전사고 증가와 대형화로 예방 중심의 재난관리 패러다임 전환 및 디지털 안전망 구축 등 대대적인 산업단지 재난관리시스템의 필요성 대두되고 있다. 이에 본 연구는 디지털트윈 기반의 통합관제기술을 통해 재난 시 유해물질의 확산 예측과 사고 발생지점 역추적, 안전한 대피경로를 제공하여 보다 신속하고 정밀한 사고대응을 위한 의사결정을 지원하는 정보체계를 제공하고자한다. 연구방법: 선행 연구 사례의 한계점인 실제 유해물질의 특성과 기상 상황에 따라 지표면 확산 또는 상층부 확산, 복합 확산 등 다양한 시뮬레이션 결과를 고려하였다. 또한 시공간 사각지대에서 발생하는 유해물질 누출에 대한 주변 IoT 센싱 데이터를 활용하여 누출 지점을 예측하는 역추적 모델을 통해 시공간 모니터링의 한계를 최소화하는 통합 관리 체계를 설계하였다. 연구결과: 구미산업단지 내에 리빙랩 2곳의 실증 기업을 선정하여 AIoT 센서를 설치하고, 디지털트윈 기반의 산업단지 유해물질 확산예측, 역추적, AI 누출예지 및 대피정보 안내 서비스를 제공하는 통합관리체계를 구축하여 리빙랩을 운영하였다. 결론: 이전 연구의 한계를 고려한 디지털트윈 기반의 AI 분석을 통해 유해화학물질 누출감지와 누출사고 예지, 3차원 복합 확산예측 및 역추적 확산을 예측하였다.
본 논문에서 기존의 치아가공기는 회전하는 모터를 사용하여 구성하였으나 이러한 모터는 정밀도, 반복정밀도가 50um 이하로 가공물 가공시에 치기공사나 치과의사가 사람에 맞추어 다시 작업을 해야하는 불편함과 시간적, 작업자의 피로도를 높일수 있는데 이러한 모터에 스크류나 밸트를 연결하여 선형적으로 움직일 수 있는 리니어모듈과 리니어모터를 적용하게되면 20um수준의 고정밀의 위치제어가 가능한 5축 치아가공기를 만들 수 있었다. 또한 MEMS센서를 이용하여 스핀들의 상태를 모니터링 하고 임계값을 지정하여 이상 신호 발생시 모터를 멈추어 위험상황에 대해서 인공지능기법을 이용하여 정지하거나 관리자에게 알림을 주어 효과적으로 5축치아가공기를 운영할 수 있도록 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.