• Title/Summary/Keyword: AI Function

Search Result 359, Processing Time 0.025 seconds

Comparison of Activation Functions of Reinforcement Learning in OpenAI Gym Environments (OpenAI Gym 환경에서 강화학습의 활성화함수 비교 분석)

  • Myung-Ju Kang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.25-26
    • /
    • 2023
  • 본 논문에서는 OpenAI Gym 환경에서 제공하는 CartPole-v1에 대해 강화학습을 통해 에이전트를 학습시키고, 학습에 적용되는 활성화함수의 성능을 비교분석하였다. 본 논문에서 적용한 활성화함수는 Sigmoid, ReLU, ReakyReLU 그리고 softplus 함수이며, 각 활성화함수를 DQN(Deep Q-Networks) 강화학습에 적용했을 때 보상 값을 비교하였다. 실험결과 ReLU 활성화함수를 적용하였을 때의 보상이 가장 높은 것을 알 수 있었다.

  • PDF

A Comparative Study of Methods of Measurement of Peripheral Pulse Waveform

  • Kang, Hee-Jung;Lee, Yong-Heum;Kim, Kyung-Chul;Han, Chang-Ho
    • The Journal of Korean Medicine
    • /
    • v.30 no.3
    • /
    • pp.98-105
    • /
    • 2009
  • Objective: Increased aortic and carotid arterial augmentation index (AI) is associated with the risk of cardiovascular disease. The most widely used approach for determining central arterial AI is by calculating the aortic pressure waveform from radial arterial waveforms using a transfer function. But how the change of waveform by applied pressure and the pattern of the change rely on subject's characteristics has not been recognized. In this study, we use a new method for measuring radial waveform and observe the change of waveform and the deviation of radial AI in the same position by applied pressure. Method: Forty-six non-patient volunteers (31 men and 15 women, age range 21-58 years) were enrolled for this study. Informed consent in a form approved by the institutional review board was obtained in all subjects. Blood pressure was measured on the left upper arm using an oscillometric method, radial pressure waves were recorded with the use of an improved automated tonometry device. DMP-3000(DAEYOMEDI Co., Ltd. Ansan, Korea) has robotics mechanism to scan and trace automatically. For each subject, we performed the procedure 5 times for each applied pressure level. We could thus obtain 5 different radial pulse waveforms for the same person's same position at different applied pressures. All these processes were repeated twice for test reproducibility. Result: Aortic AI, peripheral AI and radial AI were higher in women than in men (P<0.01), radial AI strongly correlated with aortic AI, and radial AI was consistently approximately 39% higher than aortic AI. Relationship between representative radial AI of DMP-3000 and peripheral AI of SphygmoCor had strongly correlation. And there were three patterns in change of pulse waveform. Conclusion: In this study, it is revealed the new device was sufficient to measure how radial AI and radial waveform from the same person at the same time change under applied pressure and it had inverse-proportion to applied pressure.

  • PDF

Developing Programming Education Software with Generative AI (생성형 인공지능을 활용한 프로그래밍 교육 소프트웨어 개발)

  • Do-hyeon Choi
    • Journal of Practical Engineering Education
    • /
    • v.15 no.3
    • /
    • pp.589-595
    • /
    • 2023
  • Artificial intelligence(AI) is spurring advancements in EdTech, the merger of technology and education. This includes the creation of effective learning materials and personalized student experiences. Our study focuses on developing a programming education software that employs state-of-the-art generative AI. Our software also includes prompts optimized for programming code analysis, which are based on the well-known ChatGPT API. Furthermore, the necessary functions for acquiring programming skills were created with a user interface and developed as a question-and-answer template function based on an AI chatbot. The objective of this study is to guide the development of educational programmes that make use of generative AI.

Component-based AI Application Support System using Knowledge Sharing Graph for EdgeCPS Platform (EdgeCPS 플랫폼을 위한 지식 공유 그래프를 활용한 컴포넌트 기반 AI 응용 지원 시스템)

  • Kim, Young-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1103-1110
    • /
    • 2022
  • Due to the rapid development of AI-related industries, countless edge devices are working in the real world. Since data generated within the smart space consisted of these devices is beyond imagination, it is becoming increasingly difficult for edge devices to process. To solve this issue, EdgeCPS has appeared. EdgeCPS is a technology to support harmonious execution of various application services including AI applications through interworking between edge devices and edge servers, and augmenting resources/functions. Therefore, we propose a knowledge-sharing graph-based componentized AI application support system applicable to the EdgeCPS platform. The graph is designed to effectively store information which are essential elements for creating AI applications. In order to easily change resource/function augmentation under the support of the EdgeCPS platform, AI applications are operated as components. The application support system is linked with the knowledge graph so that users can easily create and test applications, and visualizes the execution aspect of the application to users as a pipeline.

Fundamental Function Design of Real-Time Unmanned Monitoring System Applying YOLOv5s on NVIDIA TX2TM AI Edge Computing Platform

  • LEE, SI HYUN
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.22-29
    • /
    • 2022
  • In this paper, for the purpose of designing an real-time unmanned monitoring system, the YOLOv5s (small) object detection model was applied on the NVIDIA TX2TM AI (Artificial Intelligence) edge computing platform in order to design the fundamental function of an unmanned monitoring system that can detect objects in real time. YOLOv5s was applied to the our real-time unmanned monitoring system based on the performance evaluation of object detection algorithms (for example, R-CNN, SSD, RetinaNet, and YOLOv5). In addition, the performance of the four YOLOv5 models (small, medium, large, and xlarge) was compared and evaluated. Furthermore, based on these results, the YOLOv5s model suitable for the design purpose of this paper was ported to the NVIDIA TX2TM AI edge computing system and it was confirmed that it operates normally. The real-time unmanned monitoring system designed as a result of the research can be applied to various application fields such as an security or monitoring system. Future research is to apply NMS (Non-Maximum Suppression) modification, model reconstruction, and parallel processing programming techniques using CUDA (Compute Unified Device Architecture) for the improvement of object detection speed and performance.

Resource Metric Refining Module for AIOps Learning Data in Kubernetes Microservice

  • Jonghwan Park;Jaegi Son;Dongmin Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1545-1559
    • /
    • 2023
  • In the cloud environment, microservices are implemented through Kubernetes, and these services can be expanded or reduced through the autoscaling function under Kubernetes, depending on the service request or resource usage. However, the increase in the number of nodes or distributed microservices in Kubernetes and the unpredictable autoscaling function make it very difficult for system administrators to conduct operations. Artificial Intelligence for IT Operations (AIOps) supports resource management for cloud services through AI and has attracted attention as a solution to these problems. For example, after the AI model learns the metric or log data collected in the microservice units, failures can be inferred by predicting the resources in future data. However, it is difficult to construct data sets for generating learning models because many microservices used for autoscaling generate different metrics or logs in the same timestamp. In this study, we propose a cloud data refining module and structure that collects metric or log data in a microservice environment implemented by Kubernetes; and arranges it into computing resources corresponding to each service so that AI models can learn and analogize service-specific failures. We obtained Kubernetes-based AIOps learning data through this module, and after learning the built dataset through the AI model, we verified the prediction result through the differences between the obtained and actual data.

Effect of Volume fraction of SiC Particle Reinforcement on the Wear Properties of 6061AI Composites (6061AI 복합재료 마모특성에 미치는 SiC입자 강화재 체적분율의 영향)

  • Kim, Heon-Joo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.2
    • /
    • pp.82-92
    • /
    • 2002
  • In the present investigation wear behavior of the 6061AI composites reinforced with 5, 10, 20% SiC particles for dry sliding against a SM45C counterface was studied as a function of load and sliding velocity. Sliding wear tests were conducted at two loads(19.6 and 49N) and three sliding velocities(0.2, 1 and 2 m/sec) at constant sliding distance of 4000 m using pin-on-disk machine under room temperature. Presence of SiC reinforcement particles in the composites has displayed a transition from mild to severe wear at relatively higher applied load and sliding velocity compare to that of the matrix metal. As the volume fraction of SiC particles increased, the transition moved to a more severe wear conditions. Eventually, mild wear prevailed at a most severe wear conditions in this study, that was 49N load and 2 m/sec sliding velocity in 20% SiC particle/6061AI composite.

대향타겟식 스퍼터링법을 이용한 AIN 박막의 제작

  • Geum Min-Jong;Chu Sun-Nam;Choe Myeong-Gyu;Lee Won-Sik;Kim Gyeong-Hwan
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.89-92
    • /
    • 2005
  • The AIN/AI thin films were prepared at various conditions, such as $N_2$ gas flow rate [$N_2(N_2+Ar)$] from 0.6 to 0.9, a substrate temperature ranging from room temperature to $300^{\circ}C$ and working pressure 1mTorr. We estimated crystallographic characteristics and c-axis preferred orientations of AIN/AI thin films as function of AI electrode surface roughness. The optimal processing conditions for AI electrode were found at substrate temperature of $300^{\circ}C$ sputtering power of 100W and a working pressure of 2mTorr. In these conditions, we obtained the c-axis preferred orientation of $AIN/AI/SiO_2/Si$ thin film about 4 degree.

  • PDF

A Study on the Development of Korean Curriculum for Multicultural Students Using AI Technology

  • GiNam, CHO;Yong, KIM
    • Fourth Industrial Review
    • /
    • v.3 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Purpose - This study focused on the development of a Korean language curriculum to solve the problem of Korean literacy among students from multicultural families. Research design, data, and methodology - A case study was conducted on Sim(2018)'s learner-centered learning model to develop an educational plan including AI technology, which will help students from multicultural families to effectively improve their communication and learning skills by improving their reading, writing, and speaking of Korean. Result - Total of six educational plans using AI technology (Microsoft PowerPoint's drawing function, AutoDraw, and Google's Four-cut cartoons) were developed. Conclusion - The curriculum using AI is expected to greatly contribute to the recovery of language learning ability and confidence in studies necessary to improve learners' language education.

Designing Reward Function for Cooperative Traffic Signal Control at Multi-intersection (다중 교차로에서 협동적 신호제어를 위한 보상함수 설계)

  • Bae, Yo-han;Jang, Jin-heon;Song, Moon-hyuk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.110-113
    • /
    • 2022
  • Nowadays, breaking through the conventional traffic signal control method based on mathematical optimization, artificial intelligence began to be used in the area. In response to this trend, many studies are ongoing to figure out how to utilize AI technology properly for traffic signal optimization. They just simply focus on which method will work well besides lots of machine learning techniques and abandon the reward function engineering. In many cases, the reward function consists of the average delay of the vehicles in the intersection. However, this may lead to AI's misunderstanding about the traffic signal control: what AI regards as a good situation may not be realistic. Even the reward function itself may not meet the service level. Therefore, this study analyzes the problems of previous reward functions and will suggest how to reward function can be enhanced.

  • PDF