• 제목/요약/키워드: AI Dataset

검색결과 259건 처리시간 0.026초

기계학습법을 이용한 IoMT 핀테크 모델을 기반으로 한 구조화 스토리지에서의 빅데이터 관리 연구 (Big Data Management in Structured Storage Based on Fintech Models for IoMT using Machine Learning Techniques)

  • 김경실
    • 산업과 과학
    • /
    • 1권1호
    • /
    • pp.7-15
    • /
    • 2022
  • 사물인터넷(IoT) 기술은 최근 의료사물인터넷(IoMT)으로 정의된 대량의 의료 데이터를 처리하여 발전을 위해 개발된 의료분야에서 많이 활용되고 있다. 수집된 광범위한 의료 데이터는 수집된 의료 데이터를 처리하기 위해 구조화된 방식으로 클라우드에 저장된다. 그러나 방대한 양의 의료 데이터를 효과적으로 처리하는 것은 쉽지 않기 때문에 의료분야 구조 데이터를 개발하는 것이 필요하다. 본 논문에서는 IoMT에서 수집된 구조화된 건강 관리 데이터를 처리하기 위한 기계 학습 모드를 개발하였다. 광범위한 의료 데이터를 처리하기 위해 본 논문에서는 의료 데이터 처리를 위한 MTGPLSTM 모델을 제안하였다. 제안된 모델은 의료 정보 처리를 위한 선형 회귀 모델을 통합한다. 개발된 모델 이상치 모델은 IoMT에서 수집된 COVID-19 의료 데이터들의 평가 및 예측을 위해 FinTech 모델을 기반으로 구현되었다. 제안된 MTGPLSTM 모델은 감염 확산 방지를 위한 계획 계획을 예측하고 평가하기 위한 회귀 모델로 구성된다. 개발된 모델 성능은 LR, SVR, RFR, LSTM 및 제안된 MTGPLSTM 모델과 같은 서로 다른 분류기를 고려하였으며 1GB, 2GB, 3GB 등 데이터 크기가 다르다는 점도 주요하게 고려되었다. 제안된 MTGPLSTM 모델이 전 세계 데이터에 대해 최대 4% 감소된 MAPE 및 RMSE 값을 달성하였고 중국의 경우 기존 분류기보다 최대 6% 최소인 최소 MAPE(0.97)이 달성되었다.

Cross-Lingual Post-Training (XPT)을 위한 한국어 및 다국어 언어모델 연구 (Korean and Multilingual Language Models Study for Cross-Lingual Post-Training (XPT))

  • 손수현;박찬준;이정섭;심미단;이찬희;박기남;임희석
    • 한국융합학회논문지
    • /
    • 제13권3호
    • /
    • pp.77-89
    • /
    • 2022
  • 대용량의 코퍼스로 학습한 사전학습 언어모델이 다양한 자연어처리 태스크에서 성능 향상에 도움을 주는 것은 많은 연구를 통해 증명되었다. 하지만 자원이 부족한 언어 환경에서 사전학습 언어모델 학습을 위한 대용량의 코퍼스를 구축하는데는 한계가 있다. 이러한 한계를 극복할 수 있는 Cross-lingual Post-Training (XPT) 방법론을 사용하여 비교적 자원이 부족한 한국어에서 해당 방법론의 효율성을 분석한다. XPT 방법론은 자원이 풍부한 영어의 사전학습 언어모델의 파라미터를 필요에 따라 선택적으로 재활용하여 사용하며 두 언어 사이의 관계를 학습하기 위해 적응계층을 사용한다. 이를 통해 관계추출 태스크에서 적은 양의 목표 언어 데이터셋만으로도 원시언어의 사전학습 모델보다 우수한 성능을 보이는 것을 확인한다. 더불어, 국내외 학계와 기업에서 공개한 한국어 사전학습 언어모델 및 한국어 multilingual 사전학습 모델에 대한 조사를 통해 각 모델의 특징을 분석한다

미국주식 매매의 변동성 전략과 Fear & Greed 지수를 기반한 주식 자동매매 연구 (A Study on Automated Stock Trading based on Volatility Strategy and Fear & Greed Index in U.S. Stock Market)

  • 홍성혁
    • 산업과 과학
    • /
    • 제2권3호
    • /
    • pp.22-28
    • /
    • 2023
  • 본 연구에서는 변동성 전략과 Fear and Greed 지수를 통하여 미국 주식의 매매를 자동으로 하는 연구를 진행하였다. 주식 시장의 변동성은 주가 변동을 유발할 수 있는 일반적인 현상이다. 투자자는 예상되는 변동성 수준에 따라 주식을 사고 파는 변동성 전략을 구현함으로써 이러한 변동성을 이용할 수 있다. 이 논문의 목적은 주식 시장에서 수익을 창출하는 변동성 전략의 효과를 탐구한다. 본 연구는 주식시장의 2차 데이터를 활용한 정량적 연구 방법론을 채택하여, 데이터에는 2016년부터 2020년까지 5년 동안 뉴욕증권거래소(NYSE)에 상장된 S&P 500 인텍스 주식에 대한 일일 주가 및 일일 변동성 측정치가 포함하였다. 전략은 변동성이 낮은 기간에서 주식을 사고 높은 변동성 기간에서 주식을 매도하는 것을 포함하였다. 결과는 변동성 전략이 샘플 기간 동안의 벤치마크 수익률 7.5%에 비해 연평균 9.2%의 긍정적인 수익률을 창출하였다. 따라서 전략이 샘플 기간의 5년 중 4년에서 벤치마크 수익률을 능가한다는 것을 나타났다. 이 전략은 2020년 COVID-19 대유행과 같이 시장 변동성이 높은 기간 동안 특히 잘 수행되어 벤치마크 수익률 5.5%에 비해 14.6%의 수익률을 기록하였다.

멀티모달 맥락정보 융합에 기초한 다중 물체 목표 시각적 탐색 이동 (Multi-Object Goal Visual Navigation Based on Multimodal Context Fusion)

  • 최정현;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권9호
    • /
    • pp.407-418
    • /
    • 2023
  • MultiOn(Multi-Object Goal Visual Navigation)은 에이전트가 미지의 실내 환경 내 임의의 위치에 놓인 다수의 목표 물체들을 미리 정해준 일정한 순서에 따라 찾아가야 하는 매우 어려운 시각적 탐색 이동 작업이다. MultiOn 작업을 위한 기존의 모델들은 행동 선택을 위해 시각적 외관 지도나 목표 지도와 같은 단일 맥락 지도만을 이용할 뿐, 다양한 멀티모달 맥락정보에 관한 종합적인 관점을 활용할 수 없다는 한계성을 가지고 있다. 이와 같은 한계성을 극복하기 위해, 본 논문에서는 MultiOn 작업을 위한 새로운 심층 신경망 기반의 에이전트 모델인 MCFMO(Multimodal Context Fusion for MultiOn tasks)를 제안한다. 제안 모델에서는 입력 영상의 시각적 외관 특징외에 환경 물체의 의미적 특징, 목표 물체 특징도 함께 포함한 멀티모달 맥락 지도를 행동 선택에 이용한다. 또한, 제안 모델은 점-단위 합성곱 신경망 모듈을 이용하여 3가지 서로 이질적인 맥락 특징들을 효과적으로 융합한다. 이 밖에도 제안 모델은 효율적인 이동 정책 학습을 유도하기 위해, 목표 물체의 관측 여부와 방향, 그리고 거리를 예측하는 보조 작업 학습 모듈을 추가로 채용한다. 본 논문에서는 Habitat-Matterport3D 시뮬레이션 환경과 장면 데이터 집합을 이용한 다양한 정량 및 정성 실험들을 통해, 제안 모델의 우수성을 확인하였다.

CNN 딥러닝을 활용한 경관 이미지 분석 방법 평가 - 힐링장소를 대상으로 - (Assessment of Visual Landscape Image Analysis Method Using CNN Deep Learning - Focused on Healing Place -)

  • 성정한;이경진
    • 한국조경학회지
    • /
    • 제51권3호
    • /
    • pp.166-178
    • /
    • 2023
  • 본 연구는 이용자들의 인식과 경험이 내재된 소셜미디어 사진에서 경관 이미지를 분석하기 위한 방법으로 CNN 딥러닝 방법을 소개하고 평가하는 데 그 목적이 있다. 본 연구에서는 힐링장소를 연구의 대상으로 설정하여 경관 이미지를 분석하였다. 연구를 위해 텍스트마이닝과 선행연구 고찰을 통해 힐링과 관련되는 7가지의 경관 형용사를 선정하였다. 이후 CNN 딥러닝 학습 사진 구축을 위해 50명의 평가자를 모집하였으며, 평가자들에게 포털사이트에서 '힐링', '힐링풍경', '힐링장소'로 검색되는 사진 중 7가지 형용사마다 가장 적합한 사진을 3장씩 수집하도록 하였다. 수집된 사진을 정제 및 데이터 증강 과정을 거쳐 CNN 모델을 제작하였다. 이후 힐링장소 경관 분석을 위해 포털사이트에서 '힐링'과 '힐링풍경'으로 검색되는 15,097장의 사진을 수집하여 이를 분류하였다. 연구결과 '기타'와 '실내'를 제외한 범주에서 '조용한'이 2,093장(22%)으로 가장 높게 나타났으며, '개방적인', '즐거운', '안락한', '깨끗한', '자연적인', '아름다운' 순으로 나타났다. CNN 딥러닝은 경관 이미지 분석에서도 결과를 도출 가능한 분석 방법임을 연구를 통해 알 수 있었다. 또한, 기존 경관 분석 방법을 보완할 수 있는 하나의 방법임을 시사하였고, 경관 이미지 학습 데이터 셋 구축을 통한 향후 심층적이고 다양한 경관 분석을 제안한다.

인공지능 문장 분류 모델 Sentence-BERT 기반 학교 맞춤형 고등학교 통합과학 질문-답변 챗봇 -개발 및 1년간 사용 분석- (A School-tailored High School Integrated Science Q&A Chatbot with Sentence-BERT: Development and One-Year Usage Analysis)

  • 민경모;유준희
    • 한국과학교육학회지
    • /
    • 제44권3호
    • /
    • pp.231-248
    • /
    • 2024
  • 본 연구에서는 오픈소스 소프트웨어와 인공지능 문서 분류 모델인 한국어 Sentence-BERT로 고등학교 1학년 통합과학 질문-답변 챗봇을 제작하고 2023학년도 1년 동안 독립형 서버에서 운영했다. 챗봇은 Sentence-BERT 모델로 학생의 질문과 가장 유사한 질문-답변 쌍 6개를 찾아 캐러셀 형태로 출력한다. 질문-답변 데이터셋은 인터넷에 공개된 자료를 수집하여 초기 버전을 구축하였고, 챗봇을 1년 동안 운영하면서 학생의 의견과 사용성을 고려하여 자료를 정제하고 새로운 질문-답변 쌍을 추가했다. 2023학년도 말에는 총 30,819개의 데이터셋을 챗봇에 통합하였다. 학생은 챗봇을 1년 동안 총 3,457건 이용했다. 챗봇 사용 기록을 빈도분석 및 시계열 분석한 결과 학생은 수업 중 교사가 챗봇 사용을 유도할 때 챗봇을 이용했고 평소에는 방과 후에 자습하면서 챗봇을 활용했다. 학생은 챗봇에 한 번 접속하여 평균적으로 2.1~2.2회 정도 질문했고, 주로 사용한 기기는 휴대폰이었다. 학생이 챗봇에 입력한 용어를 추출하고자 한국어 형태소 분석기로 명사와 용언을 추출하여 텍스트 마이닝을 진행한 결과 학생은 과학 질문 외에도 시험 범위 등의 학교생활과 관련된 용어를 자주 입력했다. 학생이 챗봇에 자주 물어본 주제를 추출하고자 Sentence-BERT 기반의 BERTopic으로 학생의 질문을 두 차례 범주화하여 토픽 모델링을 진행했다. 전체 질문 중 88%가 35가지 주제로 수렴되었고, 학생이 챗봇에 주로 물어보는 주제를 추출할 수 있었다. 학년말에 학생을 대상으로 한 설문에서 챗봇이 캐러셀 형태로 결과를 출력하는 형태가 학습에 효과적이었고, 통합과학 학습과 학습 목적 이외의 궁금증이나 학교생활과 관련된 물음에 답해주는 역할을 수행했음을 확인할 수 있었다. 본 연구는 공교육 현장에서 학생이 실제로 활용하기에 적합한 챗봇을 개발하여 학생이 장기간에 걸쳐 챗봇을 사용하는 과정에서 얻은 데이터를 분석함으로써 학생의 요구를 충족할 수 있는 챗봇의 교육적 활용 가능성을 확인했다는 점에 의의가 있다.

효율적인 개방형 어휘 3차원 개체 분할을 위한 클래스-독립적인 3차원 마스크 제안과 2차원-3차원 시각적 특징 앙상블 (Class-Agnostic 3D Mask Proposal and 2D-3D Visual Feature Ensemble for Efficient Open-Vocabulary 3D Instance Segmentation)

  • 송성호;박경민;김인철
    • 정보처리학회 논문지
    • /
    • 제13권7호
    • /
    • pp.335-347
    • /
    • 2024
  • 개방형 어휘 3차원 포인트 클라우드 개체 분할은 3차원 장면 포인트 클라우드를 훈련단계에서 등장하였던 기본 클래스의 개체들뿐만 아니라 새로운 신규 클래스의 개체들로도 분할해야 하는 어려운 시각적 작업이다. 본 논문에서는 중요한 모델 설계 이슈별 기존 모델들의 한계점들을 극복하기 위해, 새로운 개방형 어휘 3차원 개체 분할 모델인 Open3DME를 제안한다. 첫째, 제안 모델은 클래스-독립적인 3차원 마스크의 품질을 향상시키기 위해, 새로운 트랜스포머 기반 3차원 포인트 클라우드 개체 분할 모델인 T3DIS[6]를 마스크 제안 모듈로 채용한다. 둘째, 제안 모델은 각 포인트 세그먼트별로 텍스트와 의미적으로 정렬된 시각적 특징을 얻기 위해, 사전 학습된 OpenScene 인코더와 CLIP 인코더를 적용하여 포인트 클라우드와 멀티-뷰 RGB 영상들로부터 각각 3차원 및 2차원 특징들을 추출한다. 마지막으로, 제안 모델은 개방형 어휘 레이블 할당 과정동안 각 포인트 클라우드 세그먼트별로 추출한 2차원 시각적 특징과 3차원 시각적 특징을 상호 보완적으로 함께 이용하기 위해, 특징 앙상블 기법을 적용한다. 본 논문에서는 ScanNet-V2 벤치마크 데이터 집합을 이용한 다양한 정량적, 정성적 실험들을 통해, 제안 모델의 성능 우수성을 입증한다.

BERT를 활용한 속성기반 감성분석: 속성카테고리 감성분류 모델 개발 (Aspect-Based Sentiment Analysis Using BERT: Developing Aspect Category Sentiment Classification Models)

  • 박현정;신경식
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.1-25
    • /
    • 2020
  • 대규모 텍스트에서 관심 대상이 가지고 있는 속성들에 대한 감성을 세부적으로 분석하는 속성기반 감성분석(Aspect-Based Sentiment Analysis)은 상당한 비즈니스 가치를 제공한다. 특히, 텍스트에 속성어가 존재하는 명시적 속성뿐만 아니라 속성어가 없는 암시적 속성까지 분석 대상으로 하는 속성카테고리 감성분류(ACSC, Aspect Category Sentiment Classification)는 속성기반 감성분석에서 중요한 의미를 지니고 있다. 본 연구는 속성카테고리 감성분류에 BERT 사전훈련 언어 모델을 적용할 때 기존 연구에서 다루지 않은 다음과 같은 주요 이슈들에 대한 답을 찾고, 이를 통해 우수한 ACSC 모델 구조를 도출하고자 한다. 첫째, [CLS] 토큰의 출력 벡터만 분류벡터로 사용하기보다는 속성카테고리에 대한 토큰들의 출력 벡터를 분류벡터에 반영하면 더 나은 성능을 달성할 수 있지 않을까? 둘째, 입력 데이터의 문장-쌍(sentence-pair) 구성에서 QA(Question Answering)와 NLI(Natural Language Inference) 타입 간 성능 차이가 존재할까? 셋째, 입력 데이터의 QA 또는 NLI 타입 문장-쌍 구성에서 속성카테고리를 포함한 문장의 순서에 따른 성능 차이가 존재할까? 이러한 연구 목적을 달성하기 위해 입력 및 출력 옵션들의 조합에 따라 12가지 ACSC 모델들을 구현하고 4종 영어 벤치마크 데이터셋에 대한 실험을 통해 기존 모델 이상의 성능을 제공하는 ACSC 모델들을 도출하였다. 그리고 [CLS] 토큰에 대한 출력 벡터를 분류벡터로 사용하기 보다는 속성카테고리 토큰의 출력 벡터를 사용하거나 두 가지를 함께 사용하는 것이 더욱 효과적이고, NLI 보다는 QA 타입의 입력이 대체적으로 더 나은 성능을 제공하며, QA 타입 안에서 속성이 포함된 문장의 순서는 성능과 무관한 점 등의 유용한 시사점들을 발견하였다. 본 연구에서 사용한 ACSC 모델 디자인을 위한 방법론은 다른 연구에도 비슷하게 응용될 수 있을 것으로 기대된다.

태아수종의 특성 및 사망률과 연관된 위험인자 (Identification of Characteristics and Risk Factors Associated with Mortality in Hydrops Fetalis)

  • 고훈;이병섭;김기수;원혜성;이필량;심재윤;김암;김애란
    • Neonatal Medicine
    • /
    • 제18권2호
    • /
    • pp.221-227
    • /
    • 2011
  • 목적: 태아수종으로 진단된 환아를 대상으로 태아수종의 특성과, 사망률과 연관된 위험 인자를 분석하고자 한다. 방법: 1990년 1월부터 2009년 6월까지 서울아산병원 신생아 중환자실에 입원하여 태아수종을 진단받고 치료한 환아 71명을 대상으로 후향적 의무기록 분석을 시행하여 태아수종아의 특성, 산모의 특성, 태아수종의 원인 등을 조사하였다. 또한 이들 생존군과 사망군의 2군으로 나누어 사망률과 연관된 위험 인자에 대한 분석을 시행하였다. 결과: 전체 71명의 환아(평균 재태연령: 33주, 출생체중: 2.6 kg) 중 생존한 환아의 수는 38명(53.5%), 사망한 환아의 수는 33명(46.5%)으로 나타났다. 태아수종의 원인 중, 비면역성 원인은 총 71례 중 68례(95.8%)로 나타났고, 이 중 특발성이 가장 많았고, 유미흉, 심기형, 쌍생아간 수혈, 태변복막염, 심부정맥, 선천성 감염 순으로 나타났다. 면역성 원인은 총 71례 중 3례(4.2%)로 Rh 부적합증이 2례, ABO 부적합증이 1례로 나타났다. 위험인자의 다변량 분석에서, 낮은 5분 아프가 점수(P=0.001), 유리질막병을 동반한 경우(P=0.030), 그리고 출생 시재태주령 별 50백분위수에 해당하는 표준체중을 10일내 회복하지 못하는 경우(P=0.042)에 사망률이 유의하게 증가하였다. 결론: 본 연구에서는 낮은 5분 아프가 점수, 유리질막병의 동반 그리고 재태주령 별 50백분위수에 해당하는 표준 체중을 10일 내 회복하지 못하는 경우가 태아수종의 사망률을 높이는 유의한 위험인자로 나타났다. 낮은 5분 아프가 점수 및 유리질막병을 동반한 경우는 출생 초기의 상태를 반영하고 표준 체중 회복의 지연은 출생시 태아수종의 심한 정도를 반영하기 때문에, 태아 수종에 이환된 신생아의 경우 출생 초기의 상태와 태아 수종의 정도가 예후 예견에 도움이 될 수 있을 것이라고 생각된다.