• 제목/요약/키워드: AI Dataset

검색결과 259건 처리시간 0.026초

항공 및 위성영상을 활용한 토지피복 관련 인공지능 학습 데이터 구축 및 알고리즘 적용 연구 (A Study of Establishment and application Algorithm of Artificial Intelligence Training Data on Land use/cover Using Aerial Photograph and Satellite Images)

  • 이성혁;이명진
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.871-884
    • /
    • 2021
  • 본 연구의 목적은 항공 및 위성영상을 활용한 토지피복 관련 인공지능 학습 데이터를 구축, 검증 및 알고리즘 적용의 효율화 방안을 연구하였다. 이를 위하여 토지피복 8개 항목에 대하여 고해상도의 항공영상 및 Sentinel-2 인공위성에서 얻은 이미지를 사용하여 0.51 m 및 10 m Multi-resolution 데이터셋을 구축하였다. 또한, 학습 데이터의 구성은 Fine data (총 17,000개) 와 Coarse data (총 33,000개)를 동시 구축 및 정밀한 변화 탐지 및 대규모 학습 데이터셋 구축이라는 2가지 목적을 달성하였다. 학습 데이터의 정확도를 위한 검수는 정제 데이터, 어노테이션 및 샘플링으로 3단계로 진행하였다. 최종적으로 검수가 완료된 학습데이터를 Semantic Segmentation 알고리즘 중 U-Net, DeeplabV3+에 적용하여, 결과를 분석하였다. 분석결과 항공영상 기반의 토지피복 평균 정확도는 U- Net 77.8%, Deeplab V3+ 76.3% 및 위성영상 기반의 토지피복에 대한 평균 정확도는 U-Net 91.4%, Deeplab V3+ 85.8%이다. 본 연구를 통하여 구축된 고해상도 항공영상 및 위성영상을 이용한 토지피복 인공지능 학습 데이터셋은 토지피복 변화 및 분류에 도움이 되는 참조자료로 활용이 가능하다. 향후 우리나라 전체를 대상으로 인공지능 학습 데이터셋 구축 시, 토지피복을 연구하는 다양한 인공지능 분야에 활용될 것으로 기대된다.

합성곱 신경망 기반 채점 모델 설계 및 적용을 통한 운동학 그래프 답안 자동 채점 (The Automated Scoring of Kinematics Graph Answers through the Design and Application of a Convolutional Neural Network-Based Scoring Model)

  • 한재상;김현주
    • 한국과학교육학회지
    • /
    • 제43권3호
    • /
    • pp.237-251
    • /
    • 2023
  • 본 연구는 합성곱 신경망을 활용한 자동 채점 모델을 설계하고 학생의 운동학 그래프 답안에 적용함으로써, 과학 그래프 답안에 대한 자동 채점의 가능성을 탐색하였다. 연구자가 작성한 2,200개의 답안을 2,000개의 훈련 데이터와 200개의 검증 데이터로 데이터셋을 구성하고, 202개의 학생 답안을 100개의 훈련 데이터와 102개의 시험 데이터로 데이터셋을 구성하여 연구를 진행하였다. 먼저, 자동 채점모델을 설계하고 성능을 검증하는 과정에서는 연구자가 작성한 답안 데이터셋을 활용하여 그래프 이미지 분류에 최적화되도록 자동 채점모델을 완성하였다. 다음으로 자동 채점 모델에 훈련 데이터셋을 여러 유형으로 학습시키면서 학생의 시험 데이터셋에 대한 채점을 수행하여 훈련 데이터의 양이 많고 다양할수록 자동 채점 모델의 성능이 향상된다는 것을 확인하였고, 최종적으로 인간 채점과의 일치율은 97.06%, 카파 계수는 0.957, 가중 카파 계수는 0.968을 얻었다. 한편, 훈련 데이터로 학습되지 않은 유형의 답안의 경우 인간 채점자들 간에는 채점이 거의 일치하였으나, 자동 채점 모델은 일치하지 않게 채점하는 것을 확인하였다.

대형 사전훈련 모델의 파인튜닝을 통한 강건한 한국어 음성인식 모델 구축 (Building robust Korean speech recognition model by fine-tuning large pretrained model)

  • 오창한;김청빈;박기영
    • 말소리와 음성과학
    • /
    • 제15권3호
    • /
    • pp.75-82
    • /
    • 2023
  • 자동 음성 인식(automatic speech recognition, ASR)은 딥러닝 기반 접근 방식으로 혁신되었으며, 그중에서도 자기 지도 학습 방법이 특히 효과적일 수 있음이 입증되고 있다. 본 연구에서는 다국어 ASR 시스템인 OpenAI의 Whisper 모델의 한국어 성능을 향상시키는 것을 목표하여 다국어 음성인식 시스템에서의 비주류 언어의 성능 문제를 개선하고자 한다. Whisper는 대용량 웹 음성 데이터 코퍼스(약 68만 시간)에서 사전 학습되었으며 주요 언어에 대한 강력한 인식 성능을 입증했다. 그러나 훈련 중 주요 언어가 아닌 한국어와 같은 언어를 인식하는 데 어려움을 겪을 수 있다. 우리는 약 1,000시간의 한국어 음성으로 구성된 추가 데이터 세트로 Whisper 모델을 파인튜닝하여 이 문제를 해결한다. 또한 동일한 데이터 세트를 사용하여 전체 훈련된 Transformer 모델을 베이스 라인으로 선정하여 성능을 비교한다. 실험 결과를 통해 Whisper 모델을 파인튜닝하면 문자 오류율(character error rate, CER) 측면에서 한국어 음성 인식 기능이 크게 향상되었음을 확인할 수 있다. 특히 모델 크기가 증가함에 따라 성능이 향상되는 경향을 포착하였다. 그러나 Whisper 모델의 영어 성능은 파인튜닝 후 성능이 저하됨을 확인하여 강력한 다국어 모델을 개발하기 위한 추가 연구의 필요성을 확인할 수 있었다. 추가적으로 우리의 연구는 한국어 음성인식 애플리케이션에 파인튜닝된 Whisper 모델을 활용할 수 있는 가능성을 확인할 수 있다. 향후 연구는 실시간 추론을 위한 다국어 인식과 최적화에 초점을 맞춰 실용적 연구를 이어갈 수 있겠다.

코로나바이러스 감염증19 데이터베이스에 기반을 둔 인공신경망 모델의 특성 평가 (Evaluation of Deep-Learning Feature Based COVID-19 Classifier in Various Neural Network)

  • 홍준용;정영진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권5호
    • /
    • pp.397-404
    • /
    • 2020
  • Coronavirus disease(COVID-19) is highly infectious disease that directly affects the lungs. To observe the clinical findings from these lungs, the Chest Radiography(CXR) can be used in a fast manner. However, the diagnostic performance via CXR needs to be improved, since the identifying these findings are highly time-consuming and prone to human error. Therefore, Artificial Intelligence(AI) based tool may be useful to aid the diagnosis of COVID-19 via CXR. In this study, we explored various Deep learning(DL) approach to classify COVID-19, other viral pneumonia and normal. For the original dataset and lung-segmented dataset, the pre-trained AlexNet, SqueezeNet, ResNet18, DenseNet201 were transfer-trained and validated for 3 class - COVID-19, viral pneumonia, normal. In the results, AlexNet showed the highest mean accuracy of 99.15±2.69% and fastest training time of 1.61±0.56 min among 4 pre-trained neural networks. In this study, we demonstrated the performance of 4 pre-trained neural networks in COVID-19 diagnosis with CXR images. Further, we plotted the class activation map(CAM) of each network and demonstrated that the lung-segmentation pre-processing improve the performance of COVID-19 classifier with CXR images by excluding background features.

객체 탐지를 활용한 근로자 충돌 안전관리 시스템 (Worker Collision Safety Management System using Object Detection)

  • 이태준;김성재;황철현;정회경
    • 한국정보통신학회논문지
    • /
    • 제26권9호
    • /
    • pp.1259-1265
    • /
    • 2022
  • 최근 인공지능, 빅데이터, 사물인터넷 기술이 안전사고 예방을 위한 화재 감지, 가스나 유해 물질 감지 등 다양한 솔루션에서 활용되고 있다. 2021년 고용노동부에서 발간한 산업 재해 발생 현황에 따르면, 2020년과 비교해 재해율, 재해자 수, 사망자 수가 증가하였으며 최근에는 중대재해 처벌 등에 관한 법률과 같은 안전조치를 강화하는 등 제도적, 사회적 관심이 높아지고 있다. 본 논문에서는 한국지능정보사회진흥원(NIA)에서 제공한 데이터셋 구축 가이드라인을 참고하여 현장에서 직접 수집해 데이터셋을 직접 구축하고 YOLOv4로 학습하여 객체 탐지를 통해 충돌위험 객체 탐지 시스템을 제안하고자 한다. 위험 상황 규칙 위반에 대한 정확도는 실내 88%, 실외 92%의 탐지 성능을 보였다. 이러한 시스템을 통해 산업 현장에서 발생하는 안전사고를 사전에 분석해 지능형 플랫폼 연구에 활용이 가능할 것으로 사료된다.

Contextual Modeling in Context-Aware Conversation Systems

  • Quoc-Dai Luong Tran;Dinh-Hong Vu;Anh-Cuong Le;Ashwin Ittoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권5호
    • /
    • pp.1396-1412
    • /
    • 2023
  • Conversation modeling is an important and challenging task in the field of natural language processing because it is a key component promoting the development of automated humanmachine conversation. Most recent research concerning conversation modeling focuses only on the current utterance (considered as the current question) to generate a response, and thus fails to capture the conversation's logic from its beginning. Some studies concatenate the current question with previous conversation sentences and use it as input for response generation. Another approach is to use an encoder to store all previous utterances. Each time a new question is encountered, the encoder is updated and used to generate the response. Our approach in this paper differs from previous studies in that we explicitly separate the encoding of the question from the encoding of its context. This results in different encoding models for the question and the context, capturing the specificity of each. In this way, we have access to the entire context when generating the response. To this end, we propose a deep neural network-based model, called the Context Model, to encode previous utterances' information and combine it with the current question. This approach satisfies the need for context information while keeping the different roles of the current question and its context separate while generating a response. We investigate two approaches for representing the context: Long short-term memory and Convolutional neural network. Experiments show that our Context Model outperforms a baseline model on both ConvAI2 Dataset and a collected dataset of conversational English.

가중치 VAE 오버샘플링(W-VAE)을 이용한 보안데이터셋 샘플링 기법 연구 (A Data Sampling Technique for Secure Dataset Using Weight VAE Oversampling(W-VAE))

  • 강한바다;이재우
    • 한국정보통신학회논문지
    • /
    • 제26권12호
    • /
    • pp.1872-1879
    • /
    • 2022
  • 최근 인공지능 기술이 발전하면서 해킹 공격을 탐지하기 위해 인공지능을 이용하려는 연구가 활발히 진행되고 있다. 하지만, 인공지능 모델 개발에 핵심인 학습데이터를 구성하는데 있어서 보안데이터가 대표적인 불균형 데이터라는 점이 큰 장애물로 인식되고 있다. 이에 본 눈문에서는 오버샘플링을 위한 데이터 추출에 딥러닝 생성 모델인 VAE를 적용하고 K-NN을 이용한 가중치 계산을 통해 클래스별 오버샘플링 개수를 설정하여 샘플링을 하는 W-VAE 오버샘플링 기법을 제안한다. 본 논문에서는 공개 네트워크 보안 데이터셋인 NSL-KDD를 통해 ROS, SMOTE, ADASYN 등 총 5가지 오버샘플링 기법을 적용하였으며 본 논문에서 제안한 오버샘플링 기법이 F1-Score 평가지표를 통해 기존 오버샘플링 기법과 비교하여 가장 효과적인 샘플링 기법임을 증명하였다.

Support set의 중앙값 prototype을 활용한 few-shot 학습 (Few-shot learning using the median prototype of the support set)

  • 백으뜸
    • 스마트미디어저널
    • /
    • 제12권1호
    • /
    • pp.24-31
    • /
    • 2023
  • 메타 학습(meta learning)이란 즉각적으로 아는 것과 모르는 것을 구별하는 메타 인지로 적은 양의 데이터로 스스로 학습하고, 학습한 정보와 알고리즘으로 새로운 문제에 적응하며 해결하는 학습 방식이다. 그 중, few-shot 학습 방법은 메타 학습 방법의 한 종류로 매우 적은 학습 데이터 (support set)으로도 질의 데이터(query set)를 올바르게 예측하도록 하는 학습 방법이다. 본 연구에서는 각 클래스의 mean-point vector로 생성한 프로토타입의 한계점인 높은 밀도값을 낮추면서 이상치(outlier)값을 극복하는 방법을 제안한다. 제안한 방법은 기존의 방법을 해결하기 위해, 딥러닝 모델에서 feature를 추출하고, 획득한 feature사이의 요소별로 중앙값 계산하여 프로토타입을 생성하는 방법을 사용한다. 그 후, 앞서 생성한 중앙값 프로토타입을 기반으로 few-shot 학습 방법에 사용한다. 제안한 방법의 정량적인 평가를 위해 필체 인식 데이터셋을 사용하여 기존의 방법과 비교하였다. 실험 결과를 통해 기존의 방법보다 향상된 성능을 내는 것을 확인할 수 있었다.

엣지 디바이스와 카메라 센서 퓨전을 활용한 사람 자세 데이터 자동 수집 시스템 (An Automatic Data Collection System for Human Pose using Edge Devices and Camera-Based Sensor Fusion)

  • 김영근;김승현;김정곤;김원중
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.189-196
    • /
    • 2024
  • 지능형 선별 관제 시스템의 잦은 오탐지로 인해 관제 요원들의 업무 능률 및 시장 신뢰도 저하 문제가 꾸준히 보고되고 있다. 오탐지 문제 개선을 위해 새 AI 모델을 개발하거나 교체하는 것은 기회비용이 크므로, 훈련 데이터 세트 품질을 향상하여 문제를 개선하는 것이 현실적이다. 그러나 소규모 조직은 데이터 세트 수집 및 정제 역량이 부족한 실정이다. 이에 본 논문에서는 사람 자세 추정 모델을 중심으로 엣지 디바이스와 카메라 센서 퓨전을 활용한 사람 자세 데이터 자동 수집 시스템을 제안한다. 이 시스템은 네트워크 말단에서 현장 데이터를 직접 수집하고 레이블링하는 과정을 실시간으로 처리하도록 만들어, 중앙으로 집중되는 연산 부하를 분산시킨다. 또한 현장 데이터를 직접 레이블링하므로 새로운 훈련 데이터 구축에 도움을 준다.

딥러닝의 파일 입출력을 위한 버퍼캐시 성능 개선 연구 (A Study on Improvement of Buffer Cache Performance for File I/O in Deep Learning)

  • 이정하;반효경
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.93-98
    • /
    • 2024
  • 인공지능과 고성능 컴퓨팅 기술이 급속히 발전하면서 다양한 분야에 딥러닝 기술이 활용되고 있다. 딥러닝은 학습 과정에서 대량의 데이터를 무작위로 읽어 학습을 진행하고, 이 과정을 반복한다. 많은 수의 파일들이 무작위로 반복 참조되는 딥러닝의 파일 입출력은 시간적 지역성을 지닌 일반적인 응용과는 다른 특징을 보인다. 이로 인한 캐싱의 어려움을 극복하기 위해 본 연구에서는 딥러닝 데이터셋 읽기의 무작위성을 줄이고 기존의 버퍼 캐시 알고리즘에 적응적으로 동작하는 새로운 데이터 읽기 방안을 제안한다. 본 논문에서는 실험을 통해 제안하는 방식이 버퍼 캐시의 미스율을 기존의 방식에 비해 평균 16%, 최대 33% 감소시키고, 수행시간을 24%까지 개선함을 보인다.