• Title/Summary/Keyword: AI Curriculum

Search Result 183, Processing Time 0.016 seconds

Automatic scoring of mathematics descriptive assessment using random forest algorithm (랜덤 포레스트 알고리즘을 활용한 수학 서술형 자동 채점)

  • Inyong Choi;Hwa Kyung Kim;In Woo Chung;Min Ho Song
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.165-186
    • /
    • 2024
  • Despite the growing attention on artificial intelligence-based automated scoring technology as a support method for the introduction of descriptive items in school environments and large-scale assessments, there is a noticeable lack of foundational research in mathematics compared to other subjects. This study developed an automated scoring model for two descriptive items in first-year middle school mathematics using the Random Forest algorithm, evaluated its performance, and explored ways to enhance this performance. The accuracy of the final models for the two items was found to be between 0.95 to 1.00 and 0.73 to 0.89, respectively, which is relatively high compared to automated scoring models in other subjects. We discovered that the strategic selection of the number of evaluation categories, taking into account the amount of data, is crucial for the effective development and performance of automated scoring models. Additionally, text preprocessing by mathematics education experts proved effective in improving both the performance and interpretability of the automated scoring model. Selecting a vectorization method that matches the characteristics of the items and data was identified as one way to enhance model performance. Furthermore, we confirmed that oversampling is a useful method to supplement performance in situations where practical limitations hinder balanced data collection. To enhance educational utility, further research is needed on how to utilize feature importance derived from the Random Forest-based automated scoring model to generate useful information for teaching and learning, such as feedback. This study is significant as foundational research in the field of mathematics descriptive automatic scoring, and there is a need for various subsequent studies through close collaboration between AI experts and math education experts.

Exploring Changes in Science PCK Characteristics through a Family Resemblance Approach (가족유사성 접근을 통한 과학 PCK 변화 탐색)

  • Kwak, Youngsun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.2
    • /
    • pp.235-248
    • /
    • 2022
  • With the changes in the future educational environment, such as the rapid decline of the school-age population and the expansion of students' choice of curriculum, changes are also required in PCK, the expertise of science teachers. In other words, the categories constituting the existing 'consensus-PCK' and the characteristics of 'science PCK' are not fixed, so more categories and characteristics can be added. The purpose of this study is to explore the potential area of science PCK required to cope with changes in the future educational environment in the form of 'Family Resemblance Science PCK (Family Resemblance-PCK, hereafter)' through Wittgenstein's family resemblance approach. For this purpose, in-depth interviews were conducted with three focus groups. In the focus group in-depth interview, participants discussed how the science PCK required for science teachers in future schools in 2030-2045 will change due to changes in the future society and educational environment. Qualitative analysis was performed based on the in-depth interview, and semantic network analysis was performed on the in-depth interview text to analyze the characteristics of 'Family Resemblance-PCK' differentiated from the existing 'consensus-PCK'. In results, the characteristics of Family Resemblance-PCK, which are newly requested along with changes in role expectations of science teachers, were examined by PCK area. As a result of semantic network analysis of Family Resemblance-PCK, it was found that Family Resemblance-PCK expands its boundaries from the existing consensus-PCK, which is the starting point, and new PCK elements were added. Looking at the aspects of Family Resemblance-PCK, [AI-Convergence Knowledge-Contents-Digital], [Community-Network-Human Resources-Relationships], [Technology-Exploration-Virtual Reality-Research], [Self-Directed Learning-Collaboration-Community], etc., form a distinct network cluster, and it is expected that future science teacher expertise will be formed and strengthened around these PCK areas. Based on the research results, changes in the professionalism of science teachers in future schools and countermeasures were proposed as a conclusion.

Implications for the Direction of Christian Education in the Age of Artificial Intelligence (인공지능 시대의 기독교교육 방향성에 대한 고찰)

  • Sunwoo Nam
    • Journal of Christian Education in Korea
    • /
    • v.74
    • /
    • pp.107-134
    • /
    • 2023
  • The purpose of this study is to provide a foundation for establishing the correct direction of education that utilizes artificial intelligence, a key technology of the Fourth Industrial Revolution, in the context of Christian education. To achieve this, theoretical and literature research was conducted. First, the research analyzed the historical development of artificial intelligence to understand its characteristics. Second, the research analyzed the use of artificial intelligence in convergence education from an educational perspective and examined the current policy direction in South Korea. Through this analysis, the research examined the direction of Christian education in the era of artificial intelligence. In particular, the research critically examined the perspectives of continuity and change in the context of Christian education in the era of artificial intelligence. The research reflected upon the fundamental educational purposes of Christian education that should remain unchanged despite the changing times. Furthermore, the research deliberated on the educational curriculum and teaching methods that should adapt to the changing dynamics of the era. In conclusion, this research emphasizes that even in the era of artificial intelligence, the fundamental objectives of Christian education should not be compromised. The utilization of artificial intelligence in education should serve as a tool that fulfills the mission permitted by God. Therefore, Christian education should remain centered around God, rooted in the principles of the Bible. Moreover, Christian education should aim to foster creative and convergent Christian nurturing. To achieve this, it is crucial to provide learners with an educational environment that actively utilizes AI-based hybrid learning environments and metaverse educational platforms, combining online and offline learning spaces. Moreover, to enhance learners' engagement and effectiveness in education, it is essential to actively utilize AI-based edutech that reflects the aforementioned educational environments. Lastly, in order to cultivate Christian learners with dynamic knowledge, it is crucial to employ a variety of teaching and learning methods grounded in constructivist theories, which emphasize active learner participation, collaboration, inquiry, and reflection. These approaches seek to align knowledge with life experiences, promoting a holistic convergence of faith and learning.