챗봇서비스는 AI서비스와 연계하여 다양한 분야에서 활용되고 있다. AI에 대한 보안 연구는 초기 단계이고, 이를 이용한 서비스 구현단계에서의 실질적인 보안 연구는 더욱 부족한 상황이다. 본 논문은 AI서비스와 연계된 챗봇서비스에 대한 보안요구사항을 분석한다. 먼저, 본 논문에서는 최근 발표된 AI보안에 대한 논문과 자료들을 분석한다. 시장에서 서비스가 제공되는 있는 챗봇서비스를 조사하여 일반적인 구현 모델을 정립한다. 구현 모델에는 챗봇관리시스템과 AI엔진이 포함된 5개의 구성요소가 포함되어 있다. 정립된 모델에 기반하여 쳇봇서비스에 특화된 보호자산과 위협을 정리한다. 위협은 실제 운영중인 챗봇서비스 담당자 설문을 통해 챗봇서비스에 특화된 위협을 중심으로 정리한다. 10개의 주요 위협이 도출되었다. 정리된 위협에 대응하기 위해 필요한 보안 영역을 도출하였고, 영역별로 필요한 보안요구사항을 분석하였다. 이는 챗봇서비스 보안 수준을 검토하고 개선하는 과정에서 보안평가 기준으로 활용될 것이다.
This study investigated how the use of a conversational artificial intelligence (AI) chatbot improved medical students' patient-centered communication (PCC) skills and how it affected their motivation to learn using innovative interactive tools such as AI chatbots throughout their careers. This study adopted a one-group post-test-only design to investigate the impact of AI chatbot-based learning on medical students' PCC skills, their learning motivation with AI chatbots, and their perception towards the use of AI chatbots in their learning. After a series of classroom activities, including metaverse exploration, AI chatbot-based learning activities, and classroom discussions, 43 medical students completed three surveys that measured their motivation to learn using AI tools for medical education, their perception towards the use of AI chatbots in their learning, and their self-assessment of their PCC skills. Our findings revealed significant correlations among learning motivation, PCC scores, and perception variables. Notably, the perception towards AI chatbot-based learning and AI chatbot learning motivation showed a very strong positive correlation (r=0.72), indicating that motivated students were more likely to perceive chatbots as beneficial educational tools. Additionally, a moderate correlation between motivation and self-assessed PCC skills (r=0.54) indicated that students motivated to use AI chatbots tended to rate their PCC skills more favorably. Similarly, a positive relationship (r=0.68) between students' perceptions of chatbot usage and their self-assessed PCC skills indicated that enhancing students' perceptions of AI tools could lead to better educational outcomes.
As artificial intelligence is actively studied, chatbot systems are being applied to various fields. In particular, many chatbot systems for psychological counseling have been studied that can comfort modern people. However, while most psychological counseling chatbots are studied as rule-base and deep learning-based chatbots, there are large limitations for each chatbot. To overcome the limitations of psychological counseling using such chatbots, we proposes a novel psychological counseling AI chatbot system. The proposed system consists of a GPT-2 model that generates output sentence for Korean input sentences and an Electra model that serves as sentiment analysis and anxiety cause classification, which can be provided with psychological tests and collective intelligence functions. At the same time as deep learning-based chatbots and conversations take place, sentiment analysis of input sentences simultaneously recognizes user's emotions and presents psychological tests and collective intelligence solutions to solve the limitations of psychological counseling that can only be done with chatbots. Since the role of sentiment analysis and anxiety cause classification, which are the links of each function, is important for the progression of the proposed system, we experiment the performance of those parts. We verify the novelty and accuracy of the proposed system. It also shows that the AI chatbot system can perform counseling excellently.
Recently, as the COVID-19 has spread and prolonged worldwide, the 'Untact' society is becoming routinized, and various smart technologies are leading to the spread of the 'Ontact' culture. This is because the desire of consumers to purchase a product and use the service has increased while minimizing the direct contact. In order to quickly respond to this circumstance, the percentage of the companies which are adopting Chatbot in various fields such as orders, delivery, and inquiries is increasing and they are getting a positive result. However as the demand for building Chatbot increases dramatically, there are many confusions among the companies which want to introduce Chatbot to their system, due to the lack of professional technicians and difficulties in understanding AI technologies and how to build them effectively. I believe that in the post COVID-19 era, much more companies will adopt Chatbot, and this will intensify the problem. The purpose of this study was to derive the needs for a guide on the method of buiilding a Chatbot through considering the prior research on Chatbot and analysis of the recent surge in the use of Chatbot services related to COVID-19. There are implications to presenting 5 phases of universal Chatbot implementation methodology using the platform to the stakeholders who want to introduce Chatbot to their customer so that they can understand and build Chatbot more easily and use AI Chatbot actively in response to the POST COVID-19 era.
Journal of Information Technology Applications and Management
/
제30권4호
/
pp.11-28
/
2023
This paper proposes a method of integrating ChatGPT with traditional chatbot systems to enhance conversational artificial intelligence(AI) and create more efficient conversational systems. Traditional chatbot systems are primarily based on classification models and are limited to intent classification and simple response generation. In contrast, ChatGPT is a state-of-the-art AI technology for natural language generation, which can generate more natural and fluent conversations. In this paper, we analyze the business service areas that can be integrated with ChatGPT and traditional chatbots, and present methods for conducting conversational scenarios through case studies of service types. Additionally, we suggest ways to integrate ChatGPT with traditional chatbot systems for intent recognition, conversation flow control, and response generation. We provide a practical implementation example of how to integrate ChatGPT with traditional chatbots, making it easier to understand and build integration methods and actively utilize ChatGPT with existing chatbots.
최근에 인공지능 기술발전과 더불어 코로나19 바이러스(COVID-19)가 장기화되면서 비대면 사회가 일상화되었고, 많은 기업들은 이에 대응하기 위한 디지털 트랜스포메이션과 인공지능 도입의 활성화를 촉진시키고 있으며 챗봇의 수요가 급격히 늘어났다. 또한 챗봇은 기존의 단순문의 대응에서 업무 트랜잭션 처리를 하기에 이르렀다. 하지만 기존 시스템과 연계를 위해 API를 개발해야하고 연계 하는데 많은 어려움이 발생하고 있어, 이를 해결하기 위해 RPA연계를 통한 하이브리드 챗봇을 구축하는 것이 점점 중요해지고 있으며, 최근 RPA와 챗봇의 결합이 많은 비즈니스 프로세스를 처리하는 효과적인 도구로 간주되고 있다. 그러나 연계사례 부족과 구축 방법을 찾아보기 힘들어 많은 어려움을 겪고 있다. 본 연구에서는 기존 선행연구 고찰과 하이퍼오토메이션 관점에서 Conversational UX인 챗봇과 Task Automation의 RPA를 연계한 하이브리드 챗봇 구축을 위한 방법을 실제 구현사례를 바탕으로 제시하여, 보다 쉽게 연계방법을 이해하고 구축할 수 있도록 하여 디지털 트랜스포메이션에 적극적으로 AI 챗봇을 활용할 수 있도록 하는데 시사점이 있다.
본 연구는 인공지능 챗봇 서비스의 만족과 불만족에 영향을 미치는 요인을 파악하여 인공지능 챗봇을 활용하여 시장 점유율을 높이고자 하는 기업이 활용할 수 있는 시사점을 제시하고자, ICT서비스의 14개 선호요인을 KANO모델을 통해 분류한 후 어떠한 요인이 인공지능 챗봇의 재사용과 이탈에 미치는지 확인하였다. 연구결과에 따르면 (1) 인공지능 챗봇의 선호요인은 매력적 품질, 필수적 품질, 일원적 품질로 구분되고, (2) 인공지능 챗봇은 각 선호요인의 품질특성에 따라 이용자의 만족과 불만족을 모두 고려한 서비스 전략이 필요하며, (3) 인공지능 챗봇 이용자는 상호작용성을 필수적 품질로 인식하고, 서비스에 대해 불만족하는 경우 적극적인 의견 개진보다는 이탈을 선택한다는 점을 확인하였다. 이 연구결과는 인공지능 챗봇을 활용하여 시장 점유율을 높여가기 원하는 벤처기업은 인공지능 챗봇을 통한 고객과의 소통이 가장 중요하며, 서비스 개선을 위해 고객의 참여를 적극적으로 유도하여야만 한다는 점을 시사한다.
Objectives : This study developed an AI-based patient chatbot and examined the usability and educational effectiveness of the chatbot in the context of Korean medicine education. Methods : The patient chatbot was developed using the AI chatbot builder 'Danbee', and a total of five experts were surveyed and interviewed to determine the usability, effectiveness, advantages, disadvantages, and improvement points of the chatbot. Results : The patient chatbot was found to have high usability and educational effectiveness. The advantages of the patient chatbot were 1) it provided students with practical experience in performing clinical skills, 2) it provided instructors with assessment materials while reducing their teaching burden, and 3) it could be effectively used for horizontal and vertical integration education. The disadvantages and improvements of the patient chatbot were 1) improving the accuracy of intention inference, 2) providing students with specific instructions for problem-solving activities, and 3) providing assessment results and feedback about students' activities. Conclusions : This study is significant in that it proposes a new training method to overcome the limitations of the existing doctor-patient simulation. It is hoped that this study will stimulate further research on the improvement of students' clinical skills using artificial intelligence.
AI(인공지능) 기술은 전시 기획, 현장 진행, 평가에 이르는 예술 전시 준비 과정에서 활용할 수 있다. AI는 전시 기획과 안내 서비스 분야부터 예술 창작의 도구까지 영역을 확장하고 있다. 본 연구는 전시와 AI 기술의 융합을 정보와 서비스 제공에 활용하는 챗봇을 중심으로 고찰해보았다. 더 구체적으로 연구하기 위해 네이버 클로바 챗봇 제작툴과 국립현대미술관의 정보를 사용하여 전시 서비스용 챗봇 개발(연구설계)을 진행하였다. 본 연구에서는 국립현대미술관의 모든 정보가 아닌 관람과 전시로 정보를 한정하였으며 버튼을 통해 원하는 답변을 얻는 시나리오 방식과 직접 질문을 입력하는 텍스트 Q&A 방식을 제공하는 챗봇을 개발(모델 및 평가)하였다. 엘리자(ELIZA)의 챗봇 평가 척도에 따라 여섯 가지 항목으로 챗봇을 평가해본 결과 5점 만점에 4.2점이 도출되었고 관람, 전시 정보를 전달하는 목적으로 사용될 챗봇 개발(연구모형)을 완성했다. 개발한 챗봇에 연속적인 시나리오 답변 연결과 텍스트 Q&A형 답변 실패 및 오류 해결 및 추가 서비스 확대를 통해 실제 예술 전시 공간에서 사용될 수 있는 완벽한 챗봇 모델을 제작하는 것을 향후 연구 과제로 삼는다.
This study analyzes the factors and effects on the users' intention to switch from contact center-oriented to AI chatbot-oriented customer services by combining Push-Pull-Mooring Model and provides insights for companies considering the adoption of AI chatbots. To test the model, we surveyed users with experience using chatbots at least once across different age groups. Finally, we analyzed 176 cases for the analysis using IBM SPSS Statistics and SmartPLS 4.0. The results of hypotheses testing rejected the hypotheses for variables of inconsistent quality and low availability of push factors and low switching cost of mooring factor while accepting the hypotheses for the tardy response of push factors and all pull factors. Therefore, these findings provide important implications for researchers and practitioners who wish to conduct research or adopt AI chatbots. In conclusion, users do not feel inconvenienced by the contact center-oriented service but also perceive high trust and convenience with AI chatbot-oriented service. However, despite low switching costs, users consider chatbots a complementary tool rather than an alternative. So, companies adopting AI chatbots should consider what features the users expect from AI chatbots and facilitate these features when implementing AI chatbots.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.