• 제목/요약/키워드: AI 영상인식

검색결과 107건 처리시간 0.021초

인공신경망을 이용한 샷 사이즈 분류를 위한 ROI 탐지 기반의 익스트림 클로즈업 샷 데이터 셋 생성 (Generating Extreme Close-up Shot Dataset Based On ROI Detection For Classifying Shots Using Artificial Neural Network)

  • 강동완;임양미
    • 방송공학회논문지
    • /
    • 제24권6호
    • /
    • pp.983-991
    • /
    • 2019
  • 본 연구는 영상 샷의 크기에 따라 다양한 스토리를 갖고 있는 영상들을 분석하는 것을 목표로 한다. 따라서 영상 분석에 앞서, 익스트림 클로즈업 샷, 클로즈업 샷, 미디엄 샷, 풀 샷, 롱 샷 등 샷 사이즈에 따라 데이터셋을 분류하는 것이 선행되어야 한다. 하지만 일반적인 비디오 스토리 내의 샷 분포는 클로즈업 샷, 미들 샷, 풀 샷, 롱 샷 위주로 구성되어 있기 때문에 충분한 양의 익스트림 클로즈업 샷 데이터를 얻는 것이 상대적으로 쉽지 않다. 이를 해결하기 위해 본 연구에서는 관심 영역 (Region Of Interest: ROI) 탐지 기반의 이미지 크롭핑을 통해 익스트림 클로즈업 샷을 생성함으로써 영상 분석을 위한 데이터셋을 확보 방법을 제안한다. 제안 방법은 얼굴 인식과 세일리언시(Saliency)를 활용하여 이미지로부터 얼굴 영역 위주의 관심 영역을 탐지한다. 이를 통해 확보된 데이터셋은 인공신경망의 학습 데이터로 사용되어 샷 분류 모델 구축에 활용된다. 이러한 연구는 비디오 스토리에서 캐릭터들의 감정적 변화를 분석하고 시간이 지남에 따라 이야기의 구성이 어떻게 변화하는지 예측 가능하도록 도움을 줄 수 있다. 향후의 엔터테인먼트 분야에 AI 활용이 적극적으로 활용되어질 때 캐릭터, 대화, 이미지 편집 등의 자동 조정, 생성 등에 영향을 줄 것이라 예상한다.

건설현장 내 객체검출 정확도 향상을 위한 저조도 영상 강화 기법에 관한 연구 (A Study on Low-Light Image Enhancement Technique for Improvement of Object Detection Accuracy in Construction Site)

  • 나종호;공준호;신휴성;윤일동
    • 터널과지하공간
    • /
    • 제34권3호
    • /
    • pp.208-217
    • /
    • 2024
  • AI영상 기반 건설현장 안전관리 모니터링 시스템 개발 및 적용하는 추세에 다양한 환경변화에 따른 위험 객체 탐지 딥러닝 모델 개발에 많은 연구적 관심이 쏟아지고 있다. 여러 환경 변화요인 중 저조도 조건에서 객체 검출 모델의 정확도는 현저히 감소하며, 저조도 환경을 고려한 학습을 수행하더라도 일관적인 객체 탐지 정확도를 확보할 수 없다. 이에 따라 저조도 영상을 강화하는 영상 전처리 기술의 필요성이 대두된다. 따라서, 본 논문은 취득된 건설 현장 영상 데이터를 활용하여 다양한 딥러닝 기반 저조도 영상 강화 모델(GLADNet, KinD, LLFlow, Zero-DCE)을 학습하고, 모델별 저조도 영상 강화 성능을 비교 검증실험을 진행하였다. 저조도 강화된 영상을 시각적으로 검증하였고, 영상품질 평가 지수(PSNR, SSIM, Delta-E)를 도입하여 정량적으로 분석하였다. 실험 결과, GLADNet의 저조도 영상 강화 성능이 정량·정성적 평가에서 우수한 결과를 보여줬으며, 저조도 영상 강화 모델로 적합한 것으로 분석되었다. 향후 딥러닝 기반 객체 검출 모델에 저조도 영상 강화 기법이 전처리 단계로 적용한다면, 저조도 환경에서 일관된 객체 검출 성능을 확보할 것으로 예상된다.

뇌파, 시선추적 및 인공지능 기술에 기반한 디지털 도서관 인터페이스 연구: 암묵적 적합성 피드백 활용을 중심으로 (Digital Library Interface Research Based on EEG, Eye-Tracking, and Artificial Intelligence Technologies: Focusing on the Utilization of Implicit Relevance Feedback)

  • 김현희;김용호
    • 정보관리학회지
    • /
    • 제41권1호
    • /
    • pp.261-282
    • /
    • 2024
  • 본 연구는 디지털 도서관의 콘텐츠를 탐색하는 동안 이용자의 암묵적 적합성 피드백을 활용하여 적합성을 판단하기 위해 뇌파 기반 및 시선추적 기반 방법들을 제안하고 평가해 보았다. 이를 위해서 32명을 대상으로 하여 동영상, 이미지, 텍스트 데이터를 활용하여 뇌파/시선추적 실험들을 수행하였다. 제안된 방법들의 유용성을 평가하기 위해서, 딥러닝 기반의 인공지능 방법들을 경쟁 기준으로 사용하였다. 평가 결과, 주제에 적합한 동영상과 이미지(얼굴/감정)를 선택하는 데에는 뇌파 컴포넌트 기반 방법들(av_P600, f_P3b)이 높은 분류 정확도를 나타냈고, 이미지(객체)와 텍스트(신문 기사)를 선택하는 데에는 인공지능 기반 방법 즉, 객체 인식 기반 방법과 자연언어 처리 방법이 각각 높은 분류 정확도를 나타냈다. 끝으로, 뇌파, 시선추적 및 인공지능 기술에 기반한 디지털 도서관 인터페이스를 구현하기 위한 지침 즉, 암묵적 적합성 피드백에 기반한 시스템 모형을 제안하고, 분류 정확도를 향상시키기 위해서 미디어별로 적합한 뇌파 기반, 시선추적 기반 및 인공지능 기반 방법들을 제시하였다.

딥러닝을 이용한 WTCI 설태량 평가를 위한 유효성 검증 (An Effectiveness Verification for Evaluating the Amount of WTCI Tongue Coating Using Deep Learning)

  • 이우범
    • 융합신호처리학회논문지
    • /
    • 제20권4호
    • /
    • pp.226-231
    • /
    • 2019
  • 한방 설진에서 WTCI(Winkel Tongue Coating Index) 설태 평가는 환자의 설태량 측정을 위한 중요한 객관적인 지표 중의 하나이다. 그러나 이전의 WTCI 설태 평가는 혀영상으로부터 설태 부분을 추출하여 전체 혀 영역에서 추출된 설태 영역의 비율을 정량적으로 측정하는 방법이 대부분으로 혀영상의 촬영 조건이나 설태 인식 성능에 의해서 비객관적 측정의 문제점이 있었다. 따라서 본 논문에서는 빅데이터를 기반으로 하는 인공지능의 딥러닝 방법을 적용하여 설태량을 분류하여 평가하는 딥러닝 기반의 WTCI 평가 방법을 제안하고 검증한다. 설태 평가 방법에 있어서 딥러닝의 유효성 검증을 위해서는 CNN을 학습 모델로 사용하여 소태, 박태, 후태의 3가지 유형의 설태량을 분류한다. 설태 샘플 영상을 학습 및 검증 데이터로 구축하여 CNN 기반의 딥러닝 모델로 학습한 결과 96.7%의 설태량 분류 정확성을 보였다.

빅데이터와 딥페이크 기반의 헤어스타일 추천 시스템 구현 (Implementation of Hair Style Recommendation System Based on Big data and Deepfakes)

  • 김태국
    • 사물인터넷융복합논문지
    • /
    • 제9권3호
    • /
    • pp.13-19
    • /
    • 2023
  • 본 논문에서는 빅데이터와 딥페이크 기반의 헤어스타일 추천 시스템 구현에 관해 연구하였다. 제안한 헤어스타일 추천 시스템은 사용자의 사진(이미지)을 바탕으로 얼굴형을 인식한다. 얼굴형은 타원형, 둥근형, 장방형으로 구분하며, 얼굴형에 잘 어울리는 헤어스타일을 딥페이크를 통해 합성하여 동영상으로 제공한다. 헤어스타일은 빅데이터를 바탕으로 최신 트랜드(trend)와 얼굴형에 어울리는 스타일을 적용하여 추천한다. 이미지의 분할 맵과 Motion supervised Co-Part Segmentation 알고리즘으로 같은 카테고리(머리, 얼굴 등)를 가지는 이미지들 간 요소를 합성할 수 있다. 다음으로 헤어스타일이 합성된 이미지와 미리 지정해둔 동영상을 Motion Representations for Articulated Animation 알고리즘에 적용하여 동영상 애니메이션을 생성한다. 제안한 시스템은 가상 피팅 등 전반적인 미용산업에 활용될 수 있을 것으로 기대한다. 향후 연구에서는 거울에 사물인터넷 기능 등을 적용하여 헤어스타일등을 추천해주는 스마트 거울을 연구할 예정이다.

영상 콘텐츠의 오디오 분석을 통한 메타데이터 자동 생성 방법 (Method of Automatically Generating Metadata through Audio Analysis of Video Content)

  • 용성중;박효경;유연휘;문일영
    • 한국항행학회논문지
    • /
    • 제25권6호
    • /
    • pp.557-561
    • /
    • 2021
  • 영상 콘텐츠를 사용자에게 추천하기 위해서는 메타데이터가 필수적인 요소로 자리 잡고 있다. 하지만 이러한 메타데이터는 영상 콘텐츠 제공자에 의해 수동적으로 생성되고 있다. 본 논문에서는 기존 수동으로 직접 메타데이터를 입력하는 방식에서 자동으로 메타데이터를 생성하는 방법을 연구하였다. 기존 연구에서 감정 태그를 추출하는 방법에 추가로 영화 오디오를 통한 장르와 제작국가에 대한 메타데이터 자동 생성 방법에 대해 연구를 진행하였다. 전이학습 모델인 ResNet34 인공 신경망 모델을 이용하여 오디오의 스펙트로그램으로부터 장르를 추출하고, 영화 속 화자의 음성을 음성인식을 통해 언어를 감지하였다. 이를 통해 메타데이터를 생성 인공지능을 통해 자동 생성 가능성을 확인할 수 있었다.

고성능 CNN 기반 지정맥 인증 시스템 구현 (Implementation of Finger Vein Authentication System based on High-performance CNN)

  • 김경래;최홍락;김경석
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.197-202
    • /
    • 2021
  • 지정맥을 이용한 생체인식기술은 높은 보안성, 편리성과 정확성으로 많은 관심을 받고 있으며 최근 딥러닝 기술의 발달로 인해 더욱 인증에 대한 인식 오류율 및 정확도가 향상되었다. 하지만 학습 데이터는 일정한 순서나 방법이 아닌 실제 데이터의 부분 집합으로, 결과가 일정하지 않아 데이터양과 인공신경망의 복잡도를 고려해야 한다. 본 논문에서는 지정맥 인식기의 높은 정확도와 인증 시스템 성능 향상을 위해 Inception-ResNet-v2의 딥러닝 모델을 활용하였으며 DenseNet-201의 딥러닝 모델과 성능을 비교 분석하였다. 시뮬레이션은 전북대의 MMCBNU_6000과 직접 촬영한 지정맥 영상을 사용하고 지정맥 인증 시스템에 이미지를 가공하는 과정은 없으며 생체인증 척도인 EER을 추출하여 성능 결과를 확인한다.

얼굴 메이크업을 도와주는 지능형 스마트 거울 앱의설계 (Design of an Intellectual Smart Mirror Appication helping Face Makeup)

  • 오선진;이윤석
    • 문화기술의 융합
    • /
    • 제8권5호
    • /
    • pp.497-502
    • /
    • 2022
  • 최근 젊은 세대를 중심으로 정보의 유통이나 공유 수단으로 텍스트보다는 비주얼 기반의 정보 전달을 선호하는 경향이 뚜렷하며, 인터넷상의 유투브나 1인 방송 등을 통한 정보의 유통이 일상화되고 있다. 즉, 젊은 세대들은 대부분의 원하는 정보를 이러한 유통 과정을 거쳐 습득하게 되며 활용하는 상황이다. 또한, 많은 젊은 세대들은 자신을 개성있게 꾸미고 장식하는 데에 매우 과감하고 적극적이다. 얼굴 화장이나 헤어 스타일링 및 패션 연출에 있어 남녀구분 없이 적극적인 표현과 시도를 통해 개인의 개성을 거리낌이 없이 연출하는 경향이 있다. 특히, 얼굴 메이크업은 여자들은 물론이고 최근 남자들 사이에서도 관심의 대상이 되고 있으며, 자신의 개성을 표출할 수 있는 중요한 수단으로 인식되는 상황이다. 본 연구에서는 이러한 시대적 흐름에 발맞추어 자신의 독특한 개성을 나타내기 위한 얼굴메이크업을 연출하기 위해 자신의 얼굴 모양, 헤어 컬러 및 스타일, 피부 톤, 패션 스타일과 의상 컬러 등과 잘 어울리는 얼굴 메이크업을 구현하도록 인터넷상의 유명한 전문 메이크업 아티스트 들의 유투브나 1인 방송 영상 중 관련영상을 효율적으로 검색하여 추천하고, 사용자의 평소 검색 패턴과 외모 특징들을 학습시켜 축적된 정보를 바탕으로 최적의 솔루션을 제공할 수 있도록 인공지능 기법을 도입하며, 추천된 영상을 통해 자세한 메이크업 과정을 실제 단계별로 수행하면서 메이크업 스킬을 습득하도록 하는 지능형 스마트 거울 앱을 설계하고 구현하고자 한다.

요구 공간해상도를 만족하는 무인기의 유효 비행 영역 생성 방법 (Methodology for Generating UAV's Effective Flight Area that Satisfies the Required Spatial Resolution)

  • 우지원;김양곤;안정우;박상윤;남경래
    • 한국항행학회논문지
    • /
    • 제28권4호
    • /
    • pp.400-407
    • /
    • 2024
  • 현대전에서 무인기의 역할은 지속해서 커지고 있으며, 무인기의 자율적 임무 수행 능력이 필요해지고 있다. 따라서, 촬영 영상을 기반으로한 무인기의 자율적인 표적 탐지/식별이 필수적이다. 하지만, 영상인식 인공지능 모델의 표적 인식률은 영상 내 표적의 선명도에 따라 큰 영향을 받는다. 따라서 본 연구에서는 요구 공간해상도를 고려한 촬영 장비의 화각 및 무인기의 비행 위치를 결정하는 방법을 다룬다. 먼저, 촬영하고자 하는 좌표에 대한 무인기의 상대 고도, 지면 거리, 그리고 촬영 화각에 따라 촬영 영역의 크기를 계산 방법을 다룬다. 이 방법을 통해, 본 논문에서는 촬영하고자 하는 공간해상도를 만족시킬 수 있는 촬영 영역의 넓이를 먼저 계산하고, 이를 만족할 수 있는 무인기의 상대 고도, 지면 거리, 그리고 촬영 화각을 계산한다. 또한, 촬영하고자 하는 좌표를 중심으로 요구되는 공간해상도를 만족시킬 수 있는 촬영 화각에 따른 무인기의 유효한 위치 범위를 계산하고, 이를 촬영 임무 계획에 활용할 수 있도록 표 형식으로 가공하는 방법을 제안한다.

무인 점포 사용자 이상행동을 탐지하기 위한 지능형 모션 패턴 인식 알고리즘 (Intelligent Motion Pattern Recognition Algorithm for Abnormal Behavior Detections in Unmanned Stores)

  • 최영준;나지영;안준호
    • 인터넷정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.73-80
    • /
    • 2023
  • 최근 최저시급의 가파른 인상으로 인건비에 대한 부담이 늘어남과 함께 코로나19의 여파로 무인 상점의 점유율이 높아지고 있는 추세이다. 그로 인해 무인 점포를 타겟으로 하는 도난 범죄들도 같이 늘어나고 있어 이러한 도난 사고를 방지하기 위해 Just-Walk-Out 시스템을 도입하고 고비용의 LiDAR 센서, 가중치 센서 등을 사용하거나 수동으로 지속적인 CCTV 감시를 통해서 확인하고 있다. 하지만 이런 고가의 센서를 많이 사용할수록 점포 운영에 있어 비용 부담이 늘어나게 되고, CCTV 확인은 관리자가 24시간 내내 감시하기 어려워서 사용이 제한적이다. 본 연구에서는 이런 센서들이나 사람에 의지하는 부분을 해결할 수 있고 무인점포에서 사용할 수 있는 저비용으로 도난 등의 이상행동을 하는 고객을 탐지하여 클라우드 기반의 알림을 제공하는 인공지능 영상 처리 융합 알고리즘을 제안하고자 한다. 또한 본 연구에서는 mediapipe를 이용한 모션캡쳐, YOLO를 이용한 객체탐지 그리고 융합 알고리즘을 통해 무인 점포에서 수집한 행동 패턴 데이터를 바탕으로 각 알고리즘들에 대한 정확도를 확인하며 다양한 상황 실험을 통해 융합 알고리즘의 성능을 증명했다.