• Title/Summary/Keyword: AI기반 영상분석

Search Result 116, Processing Time 0.032 seconds

JPEG AI의 부호화 프레임워크들의 분석 및 활용 사례에 대한 소개

  • 한승진;김영섭
    • Broadcasting and Media Magazine
    • /
    • v.28 no.1
    • /
    • pp.13-28
    • /
    • 2023
  • 이미지 압축은 이미지 및 영상처리에서 주요한 역할을 하며, 자율주행, 클라우드, 영상 송출 등의 분야에서 빅데이터를 처리해야 하는 수요가 늘어남에 따라 지속적인 연구가 진행 중이다. 그 중심에는 딥러닝(deep learning)의 발전이 자리잡고 있으며, 심층 신경망(deep neural network)을 효과적으로 학습하는 알고리즘들을 적용한 논문들은 기존 압축 포맷인 JPEG, JPEG 2000, MPEG 등의 압축 성능을 뛰어넘는 결과를 보여 주고 있다. 이에 따라 JPEG AI는 딥러닝 기반 학습 이미지 압축의 표준을 제정하는 일을 진행 중이다. 본 기고에서는 JPEG AI가 표준화하고자 하는 기술과 JPEG AI에 제안한 압축 프레임워크들을 분석하고, 활용 사례들을 소개하여 JPEG AI 기반 학습 이미지 압축 모델의 동향에 대해 알아보고자 한다.

  • PDF

Diagnosis of Calcification of Lung Nodules on the Chest X-ray Images using Gray-Level based Analysis (흉부 X-ray 영상 내 폐 결절의 석회화 여부 진단을 위한 화소 밝기 분석 기법)

  • Hyeon-Jin Choi;Dong-Yeon Yoo;Joo-Sung Sun;Jung-Won Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.681-683
    • /
    • 2023
  • 폐암은 전 세계적으로 사망률이 가장 높은 암 질환으로, 조기 발견 및 신속한 치료를 위해서는 흉부 X-ray 영상 내 악성 결절을 놓치지 않는 것이 중요하다. 그러나 흉부 X-ray 영상은 정밀도의 한계로 진단 결과에 대한 신뢰도가 낮아, 이를 보조하는 도구의 개발이 요구된다. 기존의 폐암 진단 보조 도구는 학습 기반의 기법으로, 진단 결과에 대한 설명성(explainability)이 없다는 위험성을 갖는다. 이에 본 논문에서는 통계 분석에 기반한 결절의 석회화 여부 진단 기법을 제안한다. 제안하는 기법은 결절과 해부학적 구조물의 밝기 차 분포로부터 석회화 여부를 판단하며, 그 결과 민감도 65.22%, 특이도 88.48%, 정확도 83.41%의 성능을 보였다.

An Efficiency Analysis of an Artificial Intelligence Medical Image Analysis Software System : Focusing on the Time Behavior of ISO/IEC 25023 Software Quality Requirements (인공지능 기술 기반의 의료영상 판독 보조 시스템의 효율성 분석 : ISO/IEC 25023 소프트웨어 품질 요구사항의 Time Behavior를 중심으로)

  • Chang-Hwa Han;Young-Hwang Jeon;Jae-Bok Han;Jong-Nam Song
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.939-945
    • /
    • 2023
  • This study analyzes the 'performance efficiency' of AI-based reading assistance systems in the field of radiology by measuring their 'time behavior' properties. Due to the increase in medical images and the limited number of radiologists, the adoption of AI-based solutions is escalating, stimulating a multitude of studies in this area. Contrary to the majority of past research which centered on AI's diagnostic precision, this study underlines the significance of time behavior. Using 50 chest X-ray PA images, the system processed images in an average of 15.24 seconds, demonstrating high consistency and reliability, which is on par with leading global AI platforms, suggesting the potential for significant improvements in radiology workflow efficiency. We expect AI technology to play a large role in the field of radiology and help improve overall healthcare quality and efficiency.

A Study on the Application Model of AI Convergence Services Using CCTV Video for the Advancement of Retail Marketing (리테일 마케팅 고도화를 위한 CCTV 영상 데이터 기반의 AI 융합 응용 서비스 활용 모델 연구)

  • Kim, Jong-Yul;Kim, Hyuk-Jung
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.197-205
    • /
    • 2021
  • Recently, the retail industry has been increasingly demanding information technology convergence and utilization to respond to various external environmental threats such as COVID-19 and to be competitive using AI technologies, but there is a very lack of research and application services. This study is a CCTV video data-driven AI application case study, using CCTV image data collection in retail space, object detection and tracking AI model, time series database to store real-time tracked objects and tracking data, heatmap to analyze congestion and interest in retail space, social access zone.We present the orientation and verify its usability in the direction designed through practical implementation.

Architectural Cultural Heritage Crack Detection Techniques Using Object Detection (객체 탐지를 이용한 건축 문화재 크랙 탐지 기법)

  • Kim, Inki;Lim, Hyunseok;Kim, Beom-Jun;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.649-652
    • /
    • 2021
  • 본 논문에서는 노후화된 목조·석조 건축물의 균열을 탐지하는 기법을 소개한다. 본 기법의 목적은 석조·목조 문화재의 시간의 흐름에 따른 관리 소홀, 균열(벌레, 날씨, 기온 등), 배부름 현상에 의한 문화재의 손상을 사전에 방지하기 위함이다. 기존에 존재하는 목조·석조 건축물의 균열, 노후, 배부름 등 다양한 결함과 변형의 탐지 방법은 접촉식 센서를 이용하여 탐지를 해왔지만, 문화재 자체의 미관을 해칠 뿐 아니라 문화재를 추가로 훼손할 가능성이 있다는 문제점이 제시되었다. 이 문제를 해결하기 위해 문화재 비 접촉형 탐지 기법을 사용한다. CCTV 및 DSLR과 같은 관측장비로 촬영한 영상정보를 기반으로 문화재의 결함과 변형을 AI 영상분석 기반 방법으로 판단하는 문제를 제안한다.

  • PDF

Image Recognition-based Learning Space Congestion Analysis App Development (영상인식 기반 학습공간 혼잡도 분석 앱 개발)

  • Jungkyun Lee;Youngchan Lee;Minsung Kim;Minseong Cho;Hong Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.179-180
    • /
    • 2024
  • 영상에서 객체를 인식하는 다양한 알고리즘이 제안되고 있으며 인식된 결과를 통해 새로운 서비스를 사용자에게 제공하는 사례가 늘어나고 있다. 본 논문에서는 카메라를 탑재한 임베디드 기기에서 영상을 촬영하고 촬영된 영상에서 의자와 사람을 탐지하여 학습공간의 혼잡도를 분석하는 앱을 설계하고 구현하였다. 구현 과정에서 실험을 통해 실시간성 확보 여부와 의자를 통한 빈자리 분할이 가능하다는 것과 앱에서도 모니터링 할 수 있다는 것을 검증하였다.

Penetration Evaluation for X-ray Images Based on Residual Analysis of Histogram Equalization (히스토그램 평탄화 잔차 분석 기반 X-ray 영상의 투과도 평가 기법)

  • JunYoung Heo;HyeonJin Choi;Dong-Yeon Yoo;Joo-Sung Sun;Jung-Won Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.597-598
    • /
    • 2023
  • X-ray는 촬영 방식의 한계로 진단하기 어려운, 품질 낮은 영상을 다수 발생시킨다. 이러한 저품질 영상은 임상 현장에서의 진단이 어려울 뿐만 아니라, 진단 보조 도구를 개발함에 모델의 성능과 신뢰도를 떨어뜨리는 주요 요소가 된다. 특히 투과도가 낮은 영상은 학습 성능에 악영향을 미친다는 것이 입증된 바 있다. 따라서 본 연구는 투과도가 낮은 영상을 진단에 부적합한 영상으로 정의하여, 이를 분류하는 기법을 제안한다. 제안하는 기법은 민감도 94.9%. 특이도 96.0%의 높은 성능을 보였다.

A study on AI upscaling algorithms suitable for facial recognition (얼굴 인식에 적합한 AI 업스케일링 알고리즘에 관한 연구)

  • Doo-il Kwak;Kwang-Young Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.598-600
    • /
    • 2023
  • CCTV가 범죄 예방 및 수사에 사용되는데, 수사를 위해 저화질 CCTV 영상에서 특정인의 얼굴 인식엔 어려움을 겪어 CCTV 본연의 역할의 희석된다. 따라서 본 논문은 저화질 영상을 고화질로 변환하여 얼굴 인식의 정확성을 높일 수 있는 알고리즘을 연구하는 것을 목적으로 한다. 기존에 연구된 인공지능 기반의 업스케일링 알고리즘을 분석하여 K-FACE 데이터셋에 적절한 모델을 제안한다. 이를 위해 2020년 이전과 이후의 AI 업스케일링 관련 연구를 비교 분석한다. 향후 제시된 모델을 대상으로 동일한 환경내에서 K-FACE 데이터셋을 학습시켜 통일된 기준의 지표 산출이 필요하다.

Implementation of Prevention and Eradication System for Harmful Wild Animals Based on YOLO (YOLO에 기반한 유해 야생동물 피해방지 및 퇴치 시스템 구현)

  • Min-Uk Chae;Choong-Ho Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.137-142
    • /
    • 2022
  • Every year, the number of wild animals appearing in human settlements increases, resulting in increased damage to property and human life. In particular, the damage is more severe when wild animals appear on highways or farmhouses. To solve this problem, ecological pathways and guide fences are being installed on highways. In addition, in order to solve the problem in farms, horn repelling using sensors, installing a net, and repelling by smell of excrement are being used. However, these methods are expensive and their effectiveness is not high. In this paper, we used YOLO (You Only Look Once), an AI-based image analysis method, to analyze harmful animals in real time to reduce malfunctions, and high-brightness LEDs and ultrasonic frequency speakers were used as extermination devices. The speaker outputs an audible frequency that only animals can hear, increasing the efficiency to only exterminate wild animals. The proposed system is designed using a general-purpose board so that it can be installed economically, and the detection performance is higher than that of the devices using the existing sensor.

A Study on the Land Change Detection and Monitoring Using High-Resolution Satellite Images and Artificial Intelligence: A Case Study of Jeongeup City (고해상도 위성영상과 인공지능을 활용한 국토 변화탐지 및 모니터링 연구: 실증대상 지역인 정읍시를 중심으로)

  • Cho, Nahye;Lee, Jungjoo;Kim, Hyundeok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.1
    • /
    • pp.107-121
    • /
    • 2023
  • In order to acquire a wide range of land that changes in real time and quickly and accurately grasp it, we plan to utilize the recently released high-resolution S.Korea's satellite image data and artificial intelligence (AI). Compared to existing satellite images, the spectral and periodic resolutions of S.Korea's satellite are higher, making them a more suitable data source for periodically monitoring changes in land. Therefore, this study aims to acquire S.Korea's satellite, select 8 types of objects to detect land changes, construct data sets for them, and apply AI models to analyze them. In order to confirm the optimal model and variable conditions for detecting 8 types of objects of various types, several experiments are performed and AI-based image analysis is technically reviewed.