• Title/Summary/Keyword: AH Plus Jet

Search Result 4, Processing Time 0.02 seconds

Physical properties of a new resin-based root canal sealer in comparison with AH Plus Jet (새로운 레진계 근관실러와 AH Plus Jet의 물성 비교)

  • Thu, Myint;Kim, Jin-Woo;Park, Se-Hee;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.2
    • /
    • pp.80-87
    • /
    • 2017
  • Purpose: The aim of this study was to assess the physical properties of a novel resin-based endodontic sealer, Any-Seal, in comparison with AH Plus Jet. Materials and Methods: Flow, radiopacity and compressive strength were examined according to ISO 6876/2001. For flow test, 0.05 mL of sealer was placed between glass plate and 100 g weight were applied. Ten minutes after mixing the sealers, the load was removed and the diameters of the compressed sealer discs were measured. For radiopacity, 10 mm diameter and 1 mm thickness sample were fabricated and took radiograph with an aluminum step-wedge and analyzed using imaging program. For compressive strength test, $4mm{\times}6mm$ cylindrical specimen was fabricated and tested after 24 hours and 1 week using Universal testing machine. Results: Both tested sealers were consistent with ISO 6876/2001 in the flow and radiopacity test. The flow values of both sealers were not significantly different (P > 0.05). AH Plus Jet had significantly higher radiopacity (P < 0.05). AH Plus Jet showed higher compressive strength at both time intervals (P < 0.05). Conclusion: Any-Seal showed low compressive strength until after 1 week, so its physical and biological aspect should be evaluated more before clinical use.

A micro-computed tomographic evaluation of root canal filling with a single gutta-percha cone and calcium silicate sealer

  • Kim, Jong Cheon;Moe, Maung Maung Kyaw;Kim, Sung Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.2
    • /
    • pp.18.1-18.9
    • /
    • 2020
  • Objectives: The purpose of this study was to evaluate the void of root canal filling over time when a calcium silicate sealer was used in the single gutta-percha cone technique. Materials and Methods: Twenty-four J-shaped simulated root canals and twenty-four palatal root canals from extracted human maxillary molars were instrumented with ProFile Ni-Ti rotary instruments up to size 35/0.06 or size 40/0.06, respectively. Half of the canals were filled with Endoseal MTA and the other half were with AH Plus Jet using the single gutta-percha cone technique. Immediately after and 4 weeks after the root canal filling, the samples were scanned using micro-computed tomography at a resolution of 12.8 ㎛. The scanned images were reconstructed using the NRecon software and the void percentages were calculated using the CTan software, and statistically analyzed by 1-way analysis of variance, paired t-test and Tukey post hoc test. Results: After 4 weeks, there were no significant changes in the void percentages at all levels in both material groups (p > 0.05), except at the apical level of the AH Plus Jet group (p < 0.05) in the simulated root canal showing more void percentage compared to other groups. Immediately after filling the extracted human root canals, the Endoseal MTA group showed significantly less void percentage compared to the AH Plus Jet group (p < 0.05). Conclusions: Under the limitations of this study, the Endoseal MTA does not seem to reduce the voids over time.

A COMPARATIVE STUDY ON RADIOPACITY OF ROOT CANAL SEALERS (근관 전색재의 방사선 불투과성에 관한 비교연구)

  • Kim, Tae-Min;Kim, Seo-Kyoung;Hwang, In-Nam;Hwang, Yun-Chan;Kang, Byung-Cheol;Yoon, Suk-Ja;Lee, Jae-Seo;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.1
    • /
    • pp.61-68
    • /
    • 2009
  • This study was performed to assess the radiopacity of a variety of root canal sealers according to the specification concerning root canal sealers. Ten materials including Tubli-$Seal^{TM}$. Kerr Pulp Canal $Sealer^{TM}$, AH $26^{(R)}$, AH $plus^{(R)}$, AH plus $jet^{TM}$, Ad sea $1^{TM}$. $Sealer^{TM}$, $NOGENOL^{TM}$, ZOB $seal^{TM}$, $Epiphany^{TM}$ and dentin were evaluated in this study. In the first part, densitometric reading of an each step of aluminum step wedge on occlusal film was performed at different voltage and exposure time. In the second part, ten specimens were radiographed simultaneously with an aluminum step wedges on the occlusal films under decided condition. The mean radiographic density values of the materials were transformed into radiopacity expressed equivalent thickness of aluminum (mm Al). The following results were obtained. 1. Among the various conditions, the appropriate voltage and exposure time that meet the requirement density was 60 kVp at 0.2 s 2. All of the materials had greater radiopacity than 3 mm Al requirement of ANSI/ADA specification No. 57 (2000) and ISO No. 6876 (2001) standards. 3. The radiopacity of materials increased as thickness of materials increased. 4. The mm Al value of each specimen at 1mm in thickness has a significant difference in the statistics. It suggests that root canal sealers have a sufficient radiopacity that meet the requirement.

Effect of Different Surface Treatment on the Shear Bond Strength between Yttria-Tetragonal Zirconia Polycrystal and Non-10-Methacryloyloxydecyl Dihydrogen Phosphate-Containing Resin Cement

  • Lee, Yoon;Yi, Young-Ah;Kim, Sin-Young;Seo, Deog-Gyu
    • Journal of Korean Dental Science
    • /
    • v.7 no.2
    • /
    • pp.49-57
    • /
    • 2014
  • Purpose: To evaluate the effect of different surface treatment methods (yttria-tetragonal zirconia polycrystal [Y-TZP] primers, air-abrasion, and tribochemical surface treatment) on the shear bond strength between (Y-TZP) ceramics and etch-and-rinse non-10-methacryloyloxydecyl dihydrogen phosphate (MDP)-containing resin cements. Materials and Methods: Y-TZP ceramic surfaces were ground flat with 600-grit silicone carbide abrasives paper and then divided into seven groups of ten. They were treated as the following: untreated (control), Monobond Plus (IvoclarVivadent), Z-PRIME Plus (Bisco Inc.), ESPE Sil with CoJet (3M ESPE), air-abrasion, Monobond Plus with air-abrasion, and Z-PRIME Plus with air-abrasion. The surface of Y-TZP specimens was analyzed under a scanning electron microscope (SEM). Non-MDP-containing cements were placed on the surface-treated Y-TZP specimens. After thermocycling, shear bond strength test was performed. Bond strength values were statistically analyzed using one-way analysis of variance and Student-Newman-Keuls multiple comparison test (P<0.05). Result: The Z-PRIME Plus treatment in combination with air-abrasion produced the highest bond strength ($14.94{\pm}1.70MPa$) followed by Monobond Plus combined with air-abrasion ($10.70{\pm}1.71MPa$), air-abrasion ($10.47{\pm}1.60MPa$), ESPE Sil after CoJet treatment ($10.38{\pm}0.87MPa$), Z-PRIME Plus application ($10.00{\pm}1.70MPa$), and then Monobond Plus application ($9.25{\pm}0.86MPa$). The control ($6.70{\pm}1.49MPa$) indicated the lowest results (P<0.05). The SEM results showed different surface morphologies according to surface treatment methods compared with the Y-TZP control. Conclusion: The shear bond strength between the Y-TZP ceramic and the non-MDP-containing resin cement was the greatest when the surface was treated with air-abrasion and MDP-containing Z-PRIME Plus primer.