• Title/Summary/Keyword: AGV

Search Result 384, Processing Time 0.027 seconds

Driving Control of Automated Guided Vehicle Using Centroid of Gravity Method (무게중심법을 이용한 무인 운반차(AGV)의 운전제어)

  • Tack, Han Ho;Kwon, Sung Gab
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.2
    • /
    • pp.59-66
    • /
    • 2014
  • AGV is most often used for the automation of freight transportation in the manufacturing industry or the distribution warehouses. AGV is fairly costly and used in goods transport between the determined location. The main control device dedicated to AGV is often autonomously developed for simplification using PLC in industry field. However, AGV developed for simplification makes many errors in traffic because it is developed for the limited simple function. Control device dedicated to AGV has been developed to solve the problem but it is almost impossible to revise the device according to the character and structure of every manufacturing industry. The purpose of this study is to propose the design method of the control system interlocked with PLC and dedicated to AGV. The control system should be to improve the problem of traffic rolling and possible to be revised according to the character of factory. It is apparent the proposed AGV system is efficient in operation in the result of several traffic performance analysis through the tests.

A Study on Design of a Tandem AGV System with Multi-Load AGVs (Multi-load AGV를 사용하는 Tandem AGV System 설계에 관한 연구)

  • Chung, Byung-Do;Kim, Kyung-Sup
    • IE interfaces
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Tandem AGV system is obtained by partitioning all workstations into multiple zones assigning a single vehicle to each zone. In this paper, we propose an analytical model to design a tandem AGV system with multi-load AGVs. Using simulation, the performance of the proposed model is shown by comparing a conventional multi-load AGV system.

Autonomous AGV for automation (무궤도 자율 AGV 개발)

  • 표종훈;최진욱;한민홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.13-18
    • /
    • 1992
  • In this study, we developed an autonomous AGV which carries materials between workshops. In most of existing AGV systems, when AGV is required to change its navigating path, the guideline or landmark of AGV should be rebuilt according to new navigating path. Using sensors and internal coordinate system, our AGV, however, can navigate along the new path by only changing input parameters of program. On navigating, if AGV meets obstacles, it avoids them and go on to the destination.

  • PDF

Velocity Control Method of AGV for Heavy Material Transport (중량물 운송을 위한 AGV의 주행 제어 방법)

  • Woo, Seung-Beom;Jung, Kyung-Hoon;Kim, Jung-Min;Park, Jung-Je;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.394-399
    • /
    • 2010
  • This paper presents to study the velocity control method of AGV for heavy material transport. Generally, in the industries, fork-type AGV using path tracking requires high stop-precision with performing operations for 20 hours. To obtain the high stop-precision of AGV for heavy material transport, AGV requires driving technic during low speed. Hence, we use encoder with keeping the speed of AGV and study the velocity control method to improve for the stop-precision of AGV. To experiment the proposed the velocity control method, we performed the experiments engaging the pallet located 4m in front of the AGV. In the experimental result, the maximum error of stop-precision was less than 18.64mm, and we verified that the proposed method is able to control stable.

Development a scheduling model for AGV dispatching of automated container terminals (자동화 컨테이너 터미널의 AGV 배차 스케줄링 모형 개발)

  • Jae-Yeong Shin;Ji-Yong Kwon;Su-Bin Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.59-60
    • /
    • 2023
  • The automation of container terminals is an important factor that determines port competitiveness, and global advanced ports tend to strengthen their competitiveness through container terminal automation. The operational efficiency of the AGV, which is an essential transport equipment of the automated terminal, can improve the productivity of the automated terminal. The operation of AGVs in automated container terminals differs from that of conventional container terminals, as it is based on an automated system in which AGVs travel along designated paths and operate according to assigned tasks, requiring consideration of factors such as workload, congestion, and collisions. To prevent such problems and improve the efficiency of AGV operations, a more sophisticated model is necessary. Thus, this paper proposes an AGV scheduling model that takes into account the AGV travel path and task assignment within the terminal The model prevent the problem of deadlock and. various cases are generated by changing AGV algebra and number of tasks to create AGV driving situations and evaluate the proposed algorithm through algorithm and optimization analysis.

  • PDF

A Study on the Transfer Point Selection Rule for Tandem AGV Systems (Tandem AGV System의 Transfer Point 결정 Rule의 수행도 평가에 관한 연구)

  • 정병도
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.10a
    • /
    • pp.209-212
    • /
    • 1998
  • Tandem AGV 시스템은 기존의 AGV 시스템의 운영 문제를 쉽게 해결하기 위해 새롭게 제시된 개념의 시스템이다. 이와 같은 Tandem AGV 시스템의 성능은 설계적, 운영적 영향을 받게 된다. 본 연구에서는 Tandem AGV 시스템의 설계적 요소 중 한 부분인 Transfer Station의 위치를 결정하기 위한 알고리즘을 제시하였다. 그리고 시뮬레이션을 통해 그 성능을 평가하였다.

  • PDF

Deadlock-free Routing of an ACV in Accelerated Motion (가감속을 고려한 교착없는 AGV 주행경로설정)

  • Choe, Ri;Park, Tae-Jin;Ryu, Kwang-Ryel
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.387-392
    • /
    • 2006
  • In the environment where AGVs(Automated Guided Vehicles) operate concurrently in limited space, collisions. deadlocks, and livelocks which have negative effect on the productivity of AGVs occure more frequently. The accelerated motion of an AGV is also the factor that make the AGV routing more difficult because the accelerated motion makes it difficult to estimate the vehicle's exact travel time. In this study, we propose methods of avoiding collisions, deadlocks, and livelocks using OAR(Occupancy Area Reservation) table, and selecting best route by estimating the travel time of an AGV in accelerated motion. A time-driven simulation validated the effectiveness of the proposed methods.

  • PDF

Development of Forklift-Type Automated Guided Vehicle(AGV) with Dual Steering Drive Unit (듀얼 조향구동 장치를 갖는 포크리프트 타입 무인운반차(AGV)의 개발)

  • Won, Chang-Yeon;Kang, Seon-Mo;Nahm, Yoon-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.145-153
    • /
    • 2021
  • Automated Guided Vehicle (AGV) is commonly used in manufacturing plant, warehouse, distribution center, and terminal. AGV is self-driven vehicle used to transport material between workstations in the shop floor without the help of an operator, and AGV includes a material transfer system located on the top and driving system at the bottom to move the vehicle as desired. For navigation, AGV mostly uses lane paths, signal paths or signal beacons. Various predominant sensors are also used in the AGV. However, in the conventional AGV, there is a problem of not turning or damaging nearby objects or AGV in a narrow space. In this paper, a new driving system is proposed to move the vehicle in a narrow space. In the proposed driving system, two sets of the combined steering-drive unit are adopted to solve the above problem. A prototype of AGV with the new driving system is developed for the comparative analysis with the conventional AGV. In addition, the experimental result shows the improved performance of the new driving system in the maximum speed, braking distance and positioning precision tests.

A Vision Based Guideline Interpretation Technique for AGV Navigation (AGV 운행을 위한 비전기반 유도선 해석 기술)

  • Byun, Sungmin;Kim, Minhwan
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1319-1329
    • /
    • 2012
  • AGVs are more and more utilized nowadays and magnetic guided AGVs are most widely used because their system has low cost and high speed. But this type of AGVs requires high infrastructure building cost and has poor flexibility of navigation path layout changing. Thus it is hard to applying this type of AGVs to a small quantity batch production system or a cooperative production system with many AGVs. In this paper, we propose a vision based guideline interpretation technique that uses the cheap, easily installable and changeable color tapes (or paint) as a guideline. So a vision-based AGV with color tapes is effectively applicable to the production systems. For easy setting and changing of AGV navigation path, we suggest an automatic method for interpreting a complex guideline layout including multi-branches and joins of branches. We also suggest a trace direction decision method for stable navigation of AGVs. Through several real-time navigation tests with an industrial AGV installed with the suggested technique, we confirmed that the technique is practically and stably applicable to real industrial field.

Design of Automatic Guided Vehicle Controller with Built-in Programmable Logic Controller (PLC 내장형 무인 반송차(AGV) 제어기 설계)

  • Lee, Ju-Won;Lee, Byeong-Ro
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.3
    • /
    • pp.118-124
    • /
    • 2019
  • Recently, the industrial field has been changed to the smart factory system based on information and communication technology (ICT) in order to improve productivity, quality and customer satisfaction. The most important machine to realize the smart factory is the AGV(automatic guided vehicle) and the adoption of AGV is increasing. Generally, AGV is developed using general purpose PLC(Programmable Logic controller), but the price of AGV is expensive and its volume is large. On the other hand, the industrial field due to space constraints in the workplace is required the low cost AGV which can be minimization, expansion of function, and easily reconfiguration. Therefore, in order to solve these problems, this study is proposed a design method of AGV controller with built-in PLC, and evaluated its performance. In the results of the experimentation, it showed good performance (speed control error = 0.021[m/s], posture control error=2.1[mm]) for the speed and posture control. In this way, when applying the proposed AGV controller in this study to the industrial filed, it is possible to reduce the size and reconfigure at low cost.