• 제목/요약/키워드: AGNPS model

검색결과 30건 처리시간 0.029초

농업비점원오염모형을 위한 GIS 호환모형의 개발 및 적용(I) -모형의 구성- (Development and Application of a GIS Interface for the Agricultural Nonpoint Source Pollution (AGNPS) Model(I) -Model Development-)

  • 김진택;박승우
    • 한국농공학회지
    • /
    • 제39권1호
    • /
    • pp.41-47
    • /
    • 1997
  • A geographical resource analysis support system (GRASS) was incorporated to an input and output processor for the agricultural nonpoint source pollution (AGNPS) model. The resulting interface system, GIS-AGNPS was a user-friendly, menu-driven system. GIS-AGNPS was developed to automatically process the input and output data from GIS-based data using GRASS and Motif routines. GIS-AGNPS was consisted of GISAGIN which was an input processor for the AGNPS model, GISAGOUT a output processor for the AGNPS and management submodel. The system defines an input data set for AGNPS from attributes of basic and thematic maps. It also provides with editing modes so that users can adjust and detail the values for selected input parameters, if needed. The post-processor at the system displays graphically the outputs from AGNPS, which may he used to identify areas significantly contributing nonpoint source pollution loads.

  • PDF

RS와 GIS-AGNPS 모형을 이용한 소유역에서의 비점원오염부하량 추정 (Estimating Pollutant Loading Using Remote Sensing and GIS-AGNPS model)

  • 강문성;박승우;전종안
    • 한국농공학회지
    • /
    • 제45권1호
    • /
    • pp.102-114
    • /
    • 2003
  • The objectives of the paper are to evaluate cell based pollutant loadings for different storm events, to monitor the hydrology and water quality of the Baran HP#6 watershed, and to validate AGNPS with the field data. Simplification was made to AGNPS in estimating storm erosivity factors from a triangular rainfall distribution. GIS-AGNPS interface model consists of three subsystems; the input data processor based on a geographic information system. the models. and the post processor Land use patten at the tested watershed was classified from the Landsat TM data using the artificial neural network model that adopts an error back propagation algorithm. AGNPS model parameters were obtained from the GIS databases, and additional parameters calibrated with field data. It was then tested with ungauged conditions. The simulated runoff was reasonably in good agreement as compared with the observed data. And simulated water quality parameters appear to be reasonably comparable to the field data.

AGNPS 모형을 이용한 농경지 관리대안에 따른 비점오염 저감효과 분석 (Assessing Impact of Non-Point Source Pollution by Management Alternatives on Arable Land using AGNPS Model)

  • 이은정;김학관;박승우
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.1008-1013
    • /
    • 2007
  • The objectives of the paper were to identify appropriate best management practices (BMPs) for reducing nonpoint source (NPS) pollutant loadings and to simulate the effects of the application of the several BMP scenarios on the study watershed using Agricultural Nonpoint Source (AGNPS) model. AGNPS model was calibrated and validated for runoff, sediment yield, and nutrient components using the observed hydrologic and water quality data. The simulated runoff, sediment, and nutrient components were well agreed with observed data. The validated AGNPS was applied to estimate the NPS pollution removal efficiency for BMP scenarios which were selected considering the pollutant characteristics of the study watershed.

  • PDF

소유역 오염예측모형 AGNPS 의 특성과 실험적 적용 (The Characteristics and Experimental Application of AGNPS Model for Pollution Predicting in Small Watershed)

  • 최진규;이명우;손재권
    • 환경영향평가
    • /
    • 제3권2호
    • /
    • pp.47-56
    • /
    • 1994
  • AGNPS model is an event-based model to analyze nonpoint-source and to examine potential water quality problems from agricultural watershed. This model uses a square grid-cell system to represent the spatial variability of watershed conditions, and simulates runoff, sediment, and nutrient transport for each cell. AGNPS model was applied on Yeonwha watershed, and the test results were compared with the measured data for runoff volume, peak runoff rate, suspended solids, and phosphorus concentration. The watershed of 278.8 ha was divided into 278 cells, each of which was 1 ha in size. The coefficients of determination for runoff volume and peak flow were (0.893 and 0.801 respectively from regression of the estimated values on the measured values. The concentration of suspendid solid was increased but decreased that of phosphate with runoff volume.

  • PDF

농업비점원오염모형을 위한 GIS 호환모형의 개발 빛 적용(II) -AGNPS모형의 수정- (Development and Application of a GIS Interface for the Agricultural Nonpoint Source Pollution (AGNPS) Model(II) -Modification of AGNPS Model-)

  • 김진택;박승우
    • 한국농공학회지
    • /
    • 제39권2호
    • /
    • pp.53-61
    • /
    • 1997
  • The interface system, GIS-AGNPS was to be validated with field data from six tested small watersheds ranging from 0.7 to 4.7$km^2$ in size which have steep topography and complex landuses. The model validation involved the calibration of input parameters and component modifications, in efforts to develop a model applicable to general uses for identifying and controlling nonpoint source pollution loads from agricultural watersheds. The simulated direct runoff from AGNPS was in good agreement with the field data for the averaged antecedent moisture conditions or AMC- II. The results differed, however, from the observed for AMC- I or III. A simple empirical relationship was proposed to estimate the curve number for AMC- I or m from AMC- II, which was found to result in simulated runoff close to the observed. The peak runoff relationship at AGNPS was also modified to reflect the watershed conditions and tested satisfactorily with the field data. The simulated sediment yields from the watersheds were fair as compared to the observed. Nutrient loads simulated from the model were different from the observed data. It appeared that the model was incapable of adequate depicting nutrient transport processes at paddy field and other landuses of the tested watersheds. Some modifications may be needed for the accurate representing the processes at paddy field.

  • PDF

AnnAGNPS 모형을 이용한 수변구역의 비점오염물질 제거능 산정 (Estimation of Nonpoint Pollutant Removal Capacity in the Buffer Strip with AnnAGNPS Model)

  • 박윤희;김태근
    • 한국환경복원기술학회지
    • /
    • 제9권5호
    • /
    • pp.22-31
    • /
    • 2006
  • AnnAGNPS model would be applied to simulate the pollutant removal capacity with the buffer strip in the Deachung reservoir watershed. In 2002, 2,270 tons of TN and 221 tons of TP were discharged from the nonpoint source pollutants in this watershed. During the rainy season, from June to September, 66.4% of TN and 71.9% of TP resulted from nonpoint source loads. AnnAGNPS model was also used to simulate the nutrients removal capacity from the buffer strip under the condition that the present landuse would be changed to forest. As the result of simulation, the removal rates of nutrients from the buffer strip of Daecheong reservoir watershed are 406 tons of TN, 39 tons of TP, which means reduction rates are TN 17.9%, TP 17.8%, respectively.

GIS와 RS를 이용한 비점원오염 모형의 적용에 관한 연구 (A Study on the Application of Agricultural Nonpoint Source Pollution(AGNPS) Model using GIS and RS)

  • 김성준;이윤아;이남호;윤광식;홍성구
    • 한국지리정보학회지
    • /
    • 제3권4호
    • /
    • pp.63-72
    • /
    • 2000
  • 본 연구의 목적은 GIS와 RS(Landsat TM, KOMPSAT EOC) 데이터를 이용한 AGNPS(Agricultural Nonpoint Source Pollution) 모형의 적용성을 판단하기 위한 것이다. AGNPS 모형은 잘 알려진 분포형 강우사상 모형으로써 이 모형은 밭의 시비수준과 축산농가의 오염 부하 수준을 적용할 수 있어 이를 효율적으로 관리할 수 있는 방법을 평가 할 수 있다. 본 연구의 대상 유역은 경기도 안성군 고산면(정동리, 야동리, 쌍령리)에 위치하고, 20개의 소규모 축산 농가가 산재해 있는 면적 $4.12km^2$ 내에 소유역이다. AGNPS 모형의 입력 데이터는 Arc/Info, GRASS, ER-Mapper, Idrisi를 사용하여 구축되었다. 모형의 보정 및 검증을 위해 사용된 강우 자료는 1시간 간격으로 관측된 1999년의 4개의 강우사상(5월 18일, 7월 29일, 9월 10일, 9월 20일)을 사용하였고, 수질 측정은 4개의 지점에서 측정된 실측자료를 사용하였다.

  • PDF

Application of AGNPS Water Quality Computer Simulation Model to a Cattle Grazing Pasture

  • Jeon, Woo-Jeong;Parajuli, P.;Yoo, K.-H.
    • 한국농공학회지
    • /
    • 제45권7호
    • /
    • pp.83-93
    • /
    • 2003
  • This research compared the observed and model predicted results that include; runoff, sediment yield, and nutrient losses from a 2.71 ha cattle grazing pasture field in North Alabama. Application of water quality computer simulation models can inexpensively and quickly assess the impact of pasture management practices on water quality. AGNPS single storm based model was applied to the three pasture species; Bermudagrass, fescue, and Ryegrass. While comparing model predicted results with observed data, it showed that model can reasonably predict the runoff, sediment yield and nutrient losses from the watershed. Over-prediction and under-prediction by the model occurred during very high and low rainfall events, respectively. The study concluded that AGNPS model can be reasonably applied to assess the impacts of pasture management practices and chicken litter application on water quality.

AnnAGNPS 모형의 강우-유출해석력 평가 (Assessment of AnnAGNPS Model in Prediction of a Rainfall-Runoff Relationship)

  • 최경숙
    • 한국지리정보학회지
    • /
    • 제8권2호
    • /
    • pp.125-135
    • /
    • 2005
  • 비점오염 발생은 강우에 의한 지표면 유출과 밀접한 관련이 있는 관계로 모형을 이용한 비점오염 해석은 먼저 유역의 강우-유출의 명확한 관계해석을 필수조건으로 한다. 본 연구는 비점오염 모의에 많이 사용되고 있는 AnnAGNPS 모형의 다양한 유역특성별 강우-유출해석능력을 평가해 보았다. 결과를 통해 AnnAGNPS 모형은 대유역 모의에 적합하며 소유역 및 강우에 대한 유역의 반응시간이 짧은 불투수층이 많은 유역에 적용하는 것은 적합하지 않은 것으로 드러났다. 특히, AnnAGNPS 모형은 모의에 사용하는 시간간격 이 일단위(daily basis)이므로 하루보다 짧은 지속시간의 복합첨두치(mutiple peak flow)를 가지는 강우사상을 표현하는 기능이 없으며 따라서 첨두유량 예측에 상당한 오차 발생의 원인으로 드러났다. 또한 유출해석에 사용되는 CN방법은 지역적인 특성에 맞게 구축된 CN정보가 없는 관계로 초기치 선택에 신중함이 요구되며, 강우의 분포형과 더불어 반드시 주요 검정대상으로 다루어져야 할 매개변수였다.

  • PDF

AnnAGNPS 모형을 이용한 관목림지의 비점오염 모의 (Non-point Source Pollution Modeling Using AnnAGNPS Model for a Bushland Catchment)

  • 최경숙
    • 한국농공학회논문집
    • /
    • 제47권4호
    • /
    • pp.65-74
    • /
    • 2005
  • AnnAGNPS model was applied to a catchment mainly occupied with bushland for modeling non-point source pollution. Since the single event model cannot handle events longer than 24 hours duration, the event-based calibration was carried out using the continuous mode. As event flows affect sediment and nutrient generation and transport, the calibration of the model was performed in three steps: Hydrologic, Sediment and Nutrient calibrations. The results from hydrologic calibration for the catchment indicate a good prediction of the model with average ARE(Absolute Relative Error) of $24.6\%$ fur the runoff volume and $12\%$ for the peak flow. For the sediment calibration, the average ARE was $198.8\%$ indicating acceptable model performance for the sediment prediction. The predicted TN(Total Nitrogen) and TP(Total Phosphorus) were also found to be acceptable as the average ARE for TN and TP were $175.5\%\;and\;126.5\%$, respectively. The AnnAGNPS model was therefore approved to be appropriate to model non-point source pollution in bushland catchments. In general, the model was likely to result in underestimation for the larger events and overestimation fur the smaller events for the water quality predictions. It was also observed that the large errors in the hydrologic prediction also produced high errors in sediment and nutrient prediction. This was probably due to error propagation in which the error in the hydrologic prediction influenced the generation of error in the water quality prediction. Accurate hydrologic calibration should be hence obtained for a reliable water quality prediction.