• Title/Summary/Keyword: AGCM

Search Result 10, Processing Time 0.025 seconds

Predictability of the Seasonal Simulation by the METRI 3-month Prediction System (기상연구소 3개월 예측시스템의 예측성 평가)

  • Byun, Young-Hwa;Song, Jee-Hye;Park, Suhee;Lim, Han-Chul
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.27-44
    • /
    • 2007
  • The purpose of this study is to investigate predictability of the seasonal simulation by the METRI (Meteorological Research Institute) AGCM (Atmospheric General Circulation Model), which is a long-term prediction model for the METRI 3-month prediction system. We examine the performance skill of climate simulation and predictability by the analysis of variance of the METRI AGCM, focusing on the precipitation, 850 hPa temperature, and 500 hPa geopotential height. According to the result, the METRI AGCM shows systematic errors with seasonal march, and represents large errors over the equatorial region, compared to the observation. Also, the response of the METRI AGCM by the variation of the sea surface temperature is obvious for the wintertime and springtime. However, the METRI AGCM does not show the significant ENSO-related signal in autumn. In case of prediction over the east Asian region, errors between the prediction results and the observation are not quite large with the lead-time. However, in the predictability assessment using the analysis of variance method, longer lead-time makes the prediction better, and the predictability becomes better in the springtime.

Estimation of Aerosol Radiative Forcing by AGCM (대기 대순환 모형을 이용한 에어로졸의 복사 강제 추정)

  • Hong, Sung-Chul;Chung, Il-Ung;Kim, Hyung-Jin;Lee, Kyu-Tae;Lee, Jae-Bum
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.623-631
    • /
    • 2008
  • Many recent studies have concentrated upon the radiative effects of atmospheric aerosols. Though their scattering and absorption of radiation, aerosols can also induce some other important environment effects. In this study, new radiation code and aerosol data within Atmosphere General Circulation Model (AGCM) is used to assess the aerosol radiative forcing and to analyze relative climate effects. The new Kangnung National University AGCM Stratospheric-15 (KNU AGCM ST15) was integrated by using two sets of radiative effect of aerosols: CTRL as not a radiative effect of aerosols and AERO as a radiative effect of aerosols. Two cases show the difference of net shortwave radiation budget at top-of-atmosphere (TOA) is found to be about $-3.4Wm^{-2}$, at the surface (SFC) is about $-5.6Wm^{-2}$. Consequently the mean atmospheric absorption due to aerosol layer in global is about $2.2Wm^{-2}$. This result confirms the existence of a negative forcing due to the direct effect of aerosols at the surface and TOA in global annual mean. In addition, it is found that cooling over at the surface air temperature due to radiative effect of aerosols is about $0.17^{\circ}C$. It is estimated that radiative forcing of the net upward longwave radiation taken as the indirect effect of aerosol is much smaller than that of the direct effect as there is about $0.2Wm^{-2}$ of positive forcing both at TOA and at SFC. From this study, It made an accurate estimation of considering effect of aerosols that is negative effect. This may slow the rate of projected global warming during the $21^{st}$ century.

Changes in the Characteristics of Wintertime Climatology Simulation for METRI AGCM Using the Improved Radiation Parameterization (METRI AGCM의 복사 모수화 개선에 따른 겨울철 기후모의의 특징적 변화)

  • Lim, Han-Cheol;Byun, Young-Hwa;Park, Suhee;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.127-143
    • /
    • 2009
  • This study investigates characteristics of wintertime simulation conducted by METRI AGCM utilizing new radiation parameterization scheme. New radiation scheme is based on the method of Chou et al., and is utilized in the METRI AGCM recently. In order to analyze characteristics of seasonal simulation in boreal winter, hindcast dataset from 1979 to 2005 is produced in two experiments - control run (CTRL) and new model's run (RADI). Also, changes in performance skill and predictability due to implementation of new radiation scheme are examined. In the wintertime simulation, the RADI experiment tends to reduce warm bias in the upper troposphere probably due to intensification of longwave radiative cooling over the whole troposphere. The radiative cooling effect is related to weakening of longitudinal temperature gradient, leading to weaker tropospheric jet in the upper troposphere. In addition, changes in vertical thermodynamic structure have an influence on reduction of tropical precipitation. Moreover, the RADI case is less sensitive to variation of tropical sea surface temperature than the CTRL case, even though the RADI case simulates the mean climate pattern well. It implies that the RADI run does not have significant improvement in seasonal prediction point of view.

A study on the atmospheric response to a SST anomaly over the Equatorial Eastern Pacific Ocean with the horizontally fine resolution AGCM (수평조밀격자 GCM을 이용한 적도 태평양상의 SST anomaly에 대한 대기 반응 연구)

  • Moon, Sung-Eui;Ahn, Joong-Bae;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.403-411
    • /
    • 1995
  • The atmospheric responses to a Sea Surface Temperature Anomaly(SSTA) over the equatorial eastern Pacific Ocean have been investigated using the horizontally fine resolution model based on OSU 2-layer Atmospheric General Circulation Model(AGCM). The SSTAS daring the peak phase of 1982-83 El Nino have been applied to the model as the boundary conditions of the experiment. The model simulates the eastward movement of the rising branch of the Walker circulation. That is, the major features associated with the El Nino such as the increase of the precipitation rate over the center of the Pacific and decrease over the Indonesia, and the 500hPa geopotential height anomaly in the middle latitude are properly describes in the fine resolution model experiment. The model results indicate that this horizontally fine resolution UM can successfully simulate the ENSO anomalies and be more effectivelly used for the study of the climate and the climate changes.

  • PDF

Radiative Role of Clouds on the Earth Surface Energy Balance (지표 에너지 수지에 미치는 구름의 복사 역할)

  • Hong, Sung-Chul;Chung, Ii-Ung;Kim, Hyung-Jin;Lee, Jae-Bum;Oh, Sung-Nam
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.261-267
    • /
    • 2007
  • In this study, the Slab Ocean Model (SOM) is coupled with an Atmospheric General Circulation Model (AGCM) which developed in University of Kangnung based on the land surface model of Biosphere-Atmosphere Transfer Scheme (BATS). The purposes of this study are to understand radiative role of clouds considering of the atmospheric feedback, and to compare the Clouds Radiative Forcing (CRF) come from the analyses using the clear-cloud sky method and CGCM. The new CGCM was integrated by using two sets of the clouds with radiative role (EXP-A) and without radiative role (EXP-B). Clouds in this two cases show the negative effect $-26.0\;Wm^{-2}$ of difference of radiation budget at top of atmosphere (TOA). The annual global means radiation budget of this simulation at TOA is larger than the estimations ($-17.0 Wm^{-2}$) came from Earth Radiation Budget Experiment (ERBE). The work showed the surface negative effect with $-18.6 Wm^{-2}$ in the two different simulations of CRF. Otherwise, sensible heat flux in the simulation shows a great contribution with positive forcing of $+24.4 Wm^{-2}$. It is found that cooling effect to the surface temperature due to radiative role of clouds is about $7.5^{\circ}C$. From this study it could make an accurate of the different CRF estimation considering either feedback of EXP-B or not EXP-A under clear-sky and cloud-sky conditions respectively at TOA. This result clearly shows its difference of CRF $-11.1 Wm^{-2}$.

The Interdecadal Variation of Relationship between Indian Ocean Sea Surface Temperature and East Asian Summer Monsoon (인도양 해수면 온도와 동아시아 여름 몬순의 관계에 대한 장주기 변동성)

  • Kim, Won-Mo;Jhun, Jong-Ghap;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.45-59
    • /
    • 2008
  • This study aims to analyze the interdecadal variation of relationship between Indian Ocean sea surface temperature (SST) and East Asian summer monsoon (EASM) during the period of 1948-2005. In the pre-period, which is from 1948 to 1975, the relationship between Indian Ocean SST and East Asian summer rainfall anomaly (EASRA) is very weak. However, in the post-period, which is trom 1980 to 2005, Indian Ocean SST is significantly positively correlated with EASRA. The equatorial Indian Ocean SST has a significantly positive correlation with EASM in spring, while Indian Ocean SST near the bay of Bengal has a positive relationship in summer for the post-period. Also the interdecadal variation of the correlation between Indian Ocean SST and EASRA is significant, but that between EASRA and the El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) is not. Atmospheric general circulation model (AGCM) test results show the pattern of increased precipitation in the zonal belt region including South Korea and Japan and the pattern of decreased precipitation in the northeastern part of Asia, which are similar to the real climate. The increase of the precipitation in August from the model run is also similar to the real climate variation. Model results indicate that the Indian Ocean SST warming could intensify the convection over the vicinity of the Philippines and the Bay of Bengal, which forces to move northward the convection center. This warming strengthens the EASM and weakens the WNPM.

Utility of Climate Model Information For Water Resources Management in Korea

  • Jeong, Chang-Sam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.37-45
    • /
    • 2008
  • It is expected that conditions of water resources will be changed in Korea in accordance with world wide climate change. In order to deal with this problem and find a way of minimizing the effect of future climate change, the usefulness of climate model simulation information is examined in this study. The objective of this study is to assess the applicability of GCM (General Circulation Model) information for Korean water resources management through uncertainty analysis. The methods are based on probabilistic measures of the effectiveness of GCM simulations of an indicator variable for discriminating high versus low regional observations of a target variable. The formulation uses the significance probability of the Kolmogorov-Smirnov test for detecting differences between two variables. An estimator that accounts for climate model simulation and spatial association between the GCM data and observed data is used. Atmospheric general circulation model (AGCM) simulations done by ECMWF (European Centre for Medium-Range Weather Forecasts) with a resolution of $2^{\circ}{\times}2^{\circ}$, and METRI (Meteorological Research Institute, Korea) with resolutions of $2^{\circ}{\times}2^{\circ}$ and $4^{\circ}{\times}5^{\circ}$, were used for indicator variables, while observed mean areal precipitation (MAP) data, discharge data and mean areal temperature data on the seven major river basins in Korea were used for target variables. The results show that GCM simulations are useful in discriminating the high from the low of the observed precipitation, discharge, and temperature values. Temperature especially can be useful regardless of model and season.

Development of Oceanic General Circulation Model for Climate Change Prediction (기후변화예측을 위한 해양대순환모형의 개발)

  • Ahn, Joong-Bae;Lee, Hyo-Shin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.1
    • /
    • pp.16-24
    • /
    • 1998
  • In this study, Ocean General Circulation Model (OGCM) has been developed as a counterpart of Atmospheric General Circulation (AGCM) for the study of coupled ocean-atmosphere climate system. The oceanic responses to given atmospheric boundary conditions have been investigated using the OGCM. In an integration carried out over 100 simulated years with climatological monthly mean data (EXP 1), most parts of the model reached a quasi-equilibrium climate reproducing many of the observed large-scale oceanic features remarkably well. Some observed narrow currents, however, such as North Equatorial Counter Current, were inevitably distorted due to the model's relatively coarse resolution. The seasonal changes in sea ice cover over the southern oceans around Antarctica were also simulated. In an experiment (EXP 2) under boundary condition of 10-year monthly data (1982-1991) from NCEP/NCAR Reanalysis Project model properly reproduced major oceanic changes during the period, including El Ni$\tilde{n}$os of 1982-1983 and 1986-87. During the ENSO periods, the experiment showed eastward expansion of warm surface waters and a negative vertical velocity anomalies along' the equator in response to expansion of westerly current velocity anomalies as westerly wind anomalies propagated eastward. Simulated anomalous distribution and the time behavior in response to El Ni$\tilde{n}$o events is consistent with that of the observations. These experiments showed that the model has an ability to reproduce major mean and anomalous oceanic features and can be effectively used for the study of ocean-atmosphere coupling system.

  • PDF