Almost every day close passage or near miss events happens in south part of Istanbul Strait between the vessel runs in the local area and pass strait transit. The vessels run in the local area pass close bow or aft of transit vessel or come close and wait for transit vessel because of inexperienced or incompetent skipper or because of time limitation or failure in technical equipment or lack of technical equipment or old equipment. This close passages create profound dangers for the surroundings. By the this research has been aimed to point out mentioned dangers by the concrete as number. For this purpose has been utilized JMS Ship Handling Simulator which has been settled in ITU Maritime Faculty and Environmental Stress Model which has been built up and improved in Inoue Laboratory. Has been put in the senarios which been played during simulation implementations transferred to the numerical risk occured during passage of South Part of Istanbul Strait by the Environmental Stress Model . Thus so, the riskwhich Istanbul Strait face everyday has been expressed as numerical and concrete.
The seat back frame of the vehicle is subjected to load on the passenger behavior. Because of steel material, it is necessary to optimize the frame considering lightweight and safety. In this paper, finite element analysis is used for the optimal design of the seat back frame. First, a lightweight material is applied to reduce the weight of the seat back frame. Secondly, the design position of the pipe part fastened in the seat back frame was selected by considering the strength against the load generated by the occupant. Third, the shape of the side frame was derived by performing the phase optimization analysis for the AFT load condition. And we have compared the initial model with the optimal model to verify the light weighting and safety. As a result, the optimal design model of the seat back frame satisfying the weight reduction and safety has been proposed.
The viscous flow around a ship hull is calculated by the use of RANS(Reynolds-averaged Navier-Stokes) solver. Reynolds stresses are midelled by using the k-${epsilon}$ turbulence model and the law is applied near the body. Body fitted corrdinates are introduced for the treatment of the complex boundary of the ship hull form and the governing equations in the physical domain transformed into ones in the computational domain. The transformed equations are numerically solved by an employment of FVM(Finite Volume Method). SIMPLE(Semi-Implicit Pressure Linked Equation) method is adopted in the calculation of pressure and the solution of the sidcretized equation is obtained by the line-by-line method with the use of TDMA(Tri-Diagonal Matrix Algorithme). To assure the proprietty of this computing method, HSVA tanker and Dyne hull are calculated ar both model and ship scale Reynolds number. Their reaults of pressure distributions on fore and aft body, axial velocity contours and transverse velocity velocity vectors and viscous resistance coefficients are compared with other's experiments and calculations.
해상에서의 선박운항자는 선박을 운항 중 장애물 혹은 타선에 대하여 적정한 이격거리를 두고 항행하고 있다. 다시 말해 시정 상태, 풍속, 조류 등에 따라 선박 전 후 거리, 좌 우현 정횡거리를 주관적인 안전 의식에 근거하여 이격하여 통항하고 있다. 현재 우리나라에서는 통항 선박 간 최소 안전이격거리 개념을 1980년대 초 외국에서 조사된 자료로 사용하고 있고, 항계 내(제한수로)와 항계 밖의 통항 선박의 안전거리가 상이함에도 불구하고 구분 없이 사용되고 있다. 또한 선박 조종학적 안전거리는 선박 전후 거리보다는 선박 측면거리가 중심이며, 선박 종류에 따라 최소 안전이격거리가 상이하지만 고려되고 있지 않은 실정이다. 따라서 이 논문에서는 상황에 따른 선박운항자의 안전 의식을 고려한 적정 이격거리를 정량화하여 해상교통안전성 평가모델의 충돌 판정 영역 개발을 위한 기초 자료로 활용하고자 하고, 우리나라에 적합한 해상교통 혼잡도 모델 개발 및 상황 선박별 해상교통관제에 필요한 가이드라인으로 이용할 수 있는 기초자료를 제공하는 데 목적이 있다. 연구결과, 시정이 양호한 주간의 경우 선수전방 4.4 L, 선미후방 3.1 L, 정횡 2.6L로 기존에 사용되고 있는 최소 안전이격거리와는 차이가 있는 것으로 분석되었으며 시정 및 주야간 등과 같은 파라미터를 다양하게 고려하였다.
선박의 항구 내 재항시간은 대상항구의 운영상태 파악 및 장래 규모 산정을 위해 중요한 요인이다. 재항시간을 분석하기 위해 다양한 연구들이 시도되어 왔으나 선박의 재항시간에 영향을 미치는 요인들의 효과를 통계적 분석을 통해 추정한 연구는 미흡한 실정이다. 특히 선박의 항구 내 재항시간은 항구 내에서 발생하는 대기오염물질 및 온실가스 배출량과 직접적인 영향이 있는 바 본 연구에서는 2008년 부산항에 입항한 외항선박(19,167척)의 재항시간을 모수적 생존분석 기법을 통해 분석하였다. 이를 위해 로그-정규 가속화시간(AFT: accelerated failure time)모형과 로그-로지스틱 AFT모형이 추정되었으며, 추정결과 재항시간은 부두의 서비스 용량, 선박의 총중량, 선박의 종류에 유의한 영향을 받는 것으로 나타났다(${\alpha}$=0.05). 추정된 재항시간, 선박별 운항시간, 연료소비량 추정치를 이용하여 선박종류별 온실가스 배출량을 산정하였으며, 그 결과 2008년 부산항에 양적하 및 여객수송 목적으로 입항한 선박의 61%를 차지하는 풀컨테이너선의 부산항계 내 온실가스 배출량은 약 "17톤/회",로 나타났다. 그러나 2008년 부산항 입항선박의 약 20%를 차지하는 컨테이너선 외 화물운송선박의 정박 시 온실가스 배출량(톤/회)은 풀컨테이너선의 온실가스 배출량(톤/회)보다 크게 나타나, 해당 선박이 취급하는 화물의 양적하 시간 및 접안대기시간을 감소시킬 수 있는 물류 처리 기술 및 항만운영 정책 도입이 필요한 것으로 나타났다.
Reynolds-averaged Navier-Stokes equations are numerically solved using a secondorder finite difference method for the analysis of turbulent flows around single and tandem hydrofoils advancing under the free surface. The location of the free surface, not known a priori, is computed from the kinematic free surface condition and the computational grid is conformed at each iteration to the free surface deformation. The eddy viscosity model of Baldwin-Lomax is employed for the turbulence closure. The method is validated through the comparision of the numerical results with the experimental data for a single hydrofoil of a Joukowski foil section. A computational study is also carried out to investigate the effect of the submergence depth and the Froude number on the lift and the drag of the hydrofoil. For tandem hydrofoils, computations are performed for several separation distances between the forward and aft foils to see the interference effect. The result shows clearly how the lift and drag change with the separation distance.
The experiment using three-dimensional laser Dopperr velocimetery (LDV) measurements and the computation using the Reynolds stress model of the commercial code, FLUENT, were conducted to give a clear understanding on the structure of tip leakage flow in a forward-swept axial-flow fan operating at the maximum efficiency condition. The tip leakage vortex was generated near the position of the minimum wall static pressure, which was located at approximately 12% chord downstream from the leading edge of blade suction side, and developed along the centerline of the pressure trough within the blade passages. A reverse flow between the blade tip region and the casing, induced by tip leakage vortex, acted as a blockage on the through-flow. As a result, high momentum flux was observed below the tip leakage vortex. As the tip leakage vortex proceeded to the aft part of the blade passage, the strength of tip leakage vortex decreased due to the strong interaction with the through-flow and casing boundary layer, and the diffusion of tip leakage vortex caused by high turbulence. In comparison with LDV measurement data, the computed results predicted the complex viscous flow patterns inside the tip region, including the locus of tip leakage vortex center, in a reliable level.
In the beginning of the 1990's, numerous shaft bearing damages, especially in aft stern tube bearing, were reported. The main reasons of bearing damages were estimated that hull deflections have been increased by more flexible hulls and propeller dynamic loads have not been considered in shaft alignment. After that time, studies to take into account hull deflections in shaft alignment have been actively carried out, but for the latter leave much to be desired. In this study, the effects of the propeller forces on the propeller shaft bearing have been investigated by estimating thrust eccentricity as reasonable as possible although some assumptions to simulate turning of ship were introduced. Three dimensional nominal wake to estimate thrust eccentricity have been calculated by using CFD analysis and model test in the towing tank. This study presents the procedure to estimate the propeller eccentric forces and their influence on the stern tube bearing for a container carrier. As a result, it has been found that the lateral propeller forces in turning condition should be considered in shaft alignment to prevent shaft bearing damages.
Yavari, Parvin;Abadi, Alireza;Amanpour, Farzaneh;Bajdik, Chris
Asian Pacific Journal of Cancer Prevention
/
제13권5호
/
pp.1829-1831
/
2012
Background: The generalized gamma distribution statistics constitute an extensive family that contains nearly all of the most commonly used distributions including the exponential, Weibull and log normal. A saturated version of the model allows covariates having effects through all the parameters of survival time distribution. Accelerated failure-time models assume that only one parameter of the distribution depends on the covariates. Methods: We fitted both the conventional GG model and the saturated form for each of its members including the Weibull and lognormal distribution; and compared them using likelihood ratios. To compare the selected parameter distribution with log logistic distribution which is a famous distribution in survival analysis that is not included in generalized gamma family, we used the Akaike information criterion (AIC; r=l(b)-2p). All models were fitted using data for 369 women age 50 years or more, diagnosed with stage IV breast cancer in BC during 1990-1999 and followed to 2010. Results: In both conventional and saturated parametric models, the lognormal was the best candidate among the GG family members; also, the lognormal fitted better than log-logistic distribution. By the conventional GG model, the variables "surgery", "radiotherapy", "hormone therapy", "erposneg" and interaction between "hormone therapy" and "erposneg" are significant. In the AFT model, we estimated the relative time for these variables. By the saturated GG model, similar significant variables are selected. Estimating the relative times in different percentiles of extended model illustrate the pattern in which the relative survival time change during the time. Conclusions: The advantage of using the generalized gamma distribution is that it facilitates estimating a model with improved fit over the standard Weibull or lognormal distributions. Alternatively, the generalized F family of distributions might be considered, of which the generalized gamma distribution is a member and also includes the commonly used log-logistic distribution.
The authors considered the effects of trim in the small coastal passenger boat upon resistance in this paper. Any change of trim no matter how small, necessarily produces some effect upon resistance. The relations between the resistance coefficients and trim were investigated through the towing test of the Model $MCI-P_1-65$, Korean Standardized Ship, GT 70 tons passenger boat in the gravitational tank. The Lines of the Model are given in Fig. 1. Principal dimensions and other characteristics vary with the trim in general. Those values varied with the trim for $MCI-P_1-65$ are tabulated in table 1. The resistance was measured at five conditions such as even keel, 0.0273L, (original designed trim) 0.0473L, 0.0663L, 0.0873L trim by the stern, fixing the displacement corresponding to the designed load water line. Model was made of wood in length of 3.5 feet coated with varnish, and without appendages. As the artificial turbulent stimulator, the sand strip method was used. The results of model towing tests, correcting to water temperature of $70^{\circ}F$, were expanded to full scale using the Schoenherr's friction formula and surface roughness allowance coefficient of 0.0004. The authors point out, the following results. 1) Optimum trim which gives the minimum resistance exists for every speed at constant displacement and each comes to the same value. For $MCI-P_1-65$ optimum trim is 0.0673L trim by the stern(Fig.4-The cross curves of the resistancecoefficients). 2) At constant displacement, when LCB(longitudinal position of center of buoyancy) varies with the trim, there exists optimum value of LCB which gives minimum resistance for every speed and each comes to the same value. For $MCI-P_1-65$ optimum position of LCB is 8%L aft from midship section (Fig.6).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.