• Title/Summary/Keyword: AFM tip

Search Result 164, Processing Time 0.023 seconds

Modelling and Measurements of Normal and Lateral Stiffness for Atomic Force Microscopy

  • Choi, Jinnil
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.240-247
    • /
    • 2014
  • Modelling and measurements of normal and lateral stiffness for atomic force microscopy (AFM) are presented in this work. Important issues, such as element discretisation, stiffness calibration, and deflection angle are explored using the finite element (FE) model. Elements with various dimension ratios are investigated and comparisons with several mathematical models are reported to verify the accuracy of the model. Investigation of the deflection angle of a cantilever is also shown. Moreover, AFM force measurement experiments with conical and colloid probe tips are demonstrated. The relationships between force and displacement, required for stiffness measurement, in normal and lateral directions are acquired for the conical tip and the limitations of the colloid probe tip are highlighted.

Fabrication and Characterization of $High-T_c$ Superconducting Single Channel Flux Flow Transistor using the Atomic Force Microscope TiO Cantilever Tip (원자힘 주사현미경 TiO 탐침을 이용한 고온 초전도 단일채널 자속 흐름 트랜지스터의 제작 및 특성 해석)

  • Ko, Seok-Cheol;Kang, Hyeong-Gon;Lim, Sung-Hun;Lee, Jong-Hwa;Lee, Hae-Sung;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.101-104
    • /
    • 2004
  • We have fabricated a channel of superconducting flux flow transistor(SFFT) using the voltage-biased atomic force microscope(AFM) TiO tip and performed numerical simulations for the SFFT controlled by the magnetic field with a control current. The critical current density in a channel of the fabricated SFFT was decreased with the applied current by a control line. By comparing the measured with theoretical results, we showed a possibility of fabrication of an SFFT with a nano-channel using AFM anodization process technique.

  • PDF

Effect of Contact Area on Friction and Wear Behavior in Atomic Force Microscope (원자 현미경을 이용한 접촉 면적에 따른 마찰 및 마멸 특성 분석)

  • Choi Dukhyun;Hwang Woonbong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.167-173
    • /
    • 2004
  • Recently, it has been reported that frictional behavior at nanometer scale can be different from that at macro scale. In this article, friction and wear tests were conducted using an AFM to investigate the effect of real contact area on the coefficient of friction and wear property. SiO$_2$, Hica, and SiGe were used in friction test and the AFM tip was Si$_3$N$_4$. The real contact area between an AFM tip and flat surface was calculated by the Johnson-Kendall-Roberts (JKR) theory. Wear specimen was Mica, and the diamond tip was used. We found that the coefficient of friction is constant below a critical area, but it is degraded over the area. Moreover, it is found that wear depth increased rapidly from a certain load and was degraded as a function of the number of the scanning cycles. Also, the range of scanning velocity used in this study had little effect on the wear depth.

Carbon tip growth by electron beam deposition (전자빔 조사에 의한 탄소상 탐침의 성장)

  • 김성현;최영진
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.144-149
    • /
    • 2003
  • Carbon tips were grown on Si cantilevers by applying an electron beam to them directly with Scanning Electron Microscope. A carbon tip was fabricated by aligning the electron beam directly down the vertical axis of Si cantilever and then irradiating a single spot on the cantilever for a proper time in the dominant atmosphere of residual gases generated by the oil of the diffusion pump. A number of control parameters for SEM, including exposure time, acceleration voltage, emission current, and beam probe current, were allowed to make various aspect ratio feature. The growth of carbon tips was not affected by the surface morphology of substrates. We could acquired the tip whose effective length is 0.5 $\mu\textrm{m}$, bottom diameter is 90 nm and cone half angle $3.5^{\circ}$ The growth technique of the high aspect ratio carbon tips on the tip-free cantilevers is available to reduce the complexities of fabricating sub-micron scale tips on the PZT thin film actuator integrated AFM cantilevers.

Investigation on the Effect of Contact Load on Fine Pattern Fabrication by AFM (AFM을 이용한 미세 패턴 가공 시 접촉 하중에 따른 선폭 변화에 대한 연구)

  • Jo S.B.;Kim D.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.502-505
    • /
    • 2005
  • To overcome some of the limitations in the conventional photolithography technique, MC-SPL which has advantages such as flexibility and high speed was developed in the past. To make a fine pattern using MC-SPL, there are many variables to control, for example, applied load, scribing speed, chemical etching condition, and etc. In this work, the effect of contact load on the width of the pattern was investigated. The load not only influences the width of the pattern but it also affects the wear of the probe tip. It was found that it is beneficial to load the tip in two stages. Futhermore, the experimental results showed that the pattern width was more sensitive to the initial contact force.

  • PDF

Probing of Electrochemical Reactions for Battery Applications by Atomic Force Microscopy

  • Kim, Yun-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.98.2-98.2
    • /
    • 2013
  • Electrochemical phenomena underpin a broad spectrum of energy, chemical, and information technologies such as resistive memories and secondary batteries. The optimization of functionalities in these devices requires understanding electrochemical mechanisms on the nanoscale. Even though the nanoscale electrochemical phenomena have been studied by electron microscopies, these methods are limited for analyzing dynamic electrochemical behavior and there is still lack of information on the nanoscale electrochemical mechanisms. The alternative way can be an atomic force microscopy (AFM) because AFM allows nanoscale measurements and, furthermore, electrochemical reaction can be controlled by an application of electric field through AFM tip. Here, I will summarize recent studies to probe nanoscale electrochemical reaction in battery applications by AFM. In particular, we have recently developed electromechanical based AFM techniques for exploring reversible and irreversible electrochemical phenomena on the nanoscale. The present work suggests new strategies to explore fundamental electrochemical mechanisms using the AFM approach and eventually will provide a powerful paradigm for probing spatially resolved electrochemical information for energy applications.

  • PDF

Nano-Mechanical and Tribological Characteristics of Ultra-Thin Amorphous Carbon Film Investigated by AFM

  • Chung, Koo-Hyun;Lee, Jae-Won;Kim, Dae-Eun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1772-1781
    • /
    • 2004
  • The mechanical as well as tribological characteristics of coating films as thin as a few nm become more crucial as applications in micro-systems grow. Especially, the amorphous carbon film has a potential to be used as a protective layer for micro-systems. In this work, quantitative evaluation of nano-indentation, scratching, and wear tests were performed on the 7nm thick amorphous carbon film using an Atomic Force Microscope (AFM). It was shown that AFM-based nano-indentation using a diamond coated tip can be feasibly utilized for mechanical characterization of ultra-thin films. Also, it was found that the critical load where the failure of the carbon film occurred was about 18${\mu}$N by the ramp load scratch test. Finally, the wear experimental results showed that the quantitative wear rate of the carbon film ranged 10$\^$-9/~10$\^$-8/ ㎣ /N cycle. These experimental methods can be effectively utilized for a better understanding the mechanical and tribological characteristics at the nano-scale.

Determination of the Allowable Vibration Level of the Atomic Force Microscope Equipment (원자 현미경 장비의 바닥 진동(정상 상태) 허용 기준 결정)

  • Lee, Dong-Yeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.161-164
    • /
    • 2000
  • Currently, Atomic Force Microscope(AFM) has been widely used to measure the surface topography of a sample by detecting interaction force between atoms on the sample and extremely sharp probe tip. The vertical resolution of AFM is mainly determined by external vibration noise. The resolution of AFM shows different values for the different environment, thus it is necessary to determine relationship between the criteria and the resolution of AFM regardless of environment. In this paper, we discuss the allowable level of floor vibration for AFM equipment at given resolution. The vibration criteria can be used as reference data to design mechanical structure and to analyze the structural dynamics of AFM equipment.

  • PDF

Improvement of the Carbon Nanotube Tip by Focused Ion Beam and it Performance Evaluation (탄소나노튜브 팁의 집속이온빔에 의한 개선 및 성능 평가)

  • Han, Chang-Soo;Shin, Young-Hyun;Yoon, Yu-Hwan;Lee, Eung-Sug
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.139-144
    • /
    • 2007
  • This paper presents development of carbon nanotube (CNT) tip modified by focused ion beam (FIB) and experimental results in non-contact mode of atomic force microscopy (AFM) using fabricated tip. We used an electric field which causes dielectrophoresis, to align and deposit CNTs on a conventional silicon tip. The morphology of the fabricated CNT tip was then modified into a desired shape using focused ion beam. We measured anodic aluminum oxide sample and trench structure to estimate the performance of FIB-modified tip and compared with those of conventional Si tip. We demonstrate that FIB modified tip in non contact mode had superior characteristics than conventional tip in the respects of wear, image resolution and sidewall measurement.

150 nm Pitch Measurement using Metrological AFM (길이 소급성을 갖는 AFM을 이용한 150nm 피치 측정)

  • ;I. Misumi;S. Gonda;T. Kurosawa
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.264-267
    • /
    • 2003
  • Pitch measurements of 150 nm pitch one-dimensional grating standards were carried out using an contact mode atomic force microscopy(C-AFM) with a high resolution three-axis laser interferometer. It was called as 'Nano-metrological AFM' In Nano-metrological AFM, Three laser interferometers were aligned well to the end of AFM tip. Laser sources of the three-axis laser interferometer in the nano-metrological AFM were calibrated with an I$_2$-stablilzed He-Ne laser at a wavelength of 633 nm. So, the Abbe error was minimized and the result of the pitch measurement using the nano-metrological AFM has a traceability to the length standard directly. The uncertainty in the pitch measurement was estimated in accordance with the Guide to the Expression of Uncertainty in Measurement(GUM). The Primary source of uncertainty in the pitch-measurements was derived from repeatability of pitch-measurement, and its value was approx 0.186 nm. Expanded uncertainty(k=2) of less than 5.23 nm was obtained. It is suggested that the metrological AFM is a useful tool for the nano-metrological standard calibration.

  • PDF