• Title/Summary/Keyword: AFM(Atomic farce microscope)

Search Result 3, Processing Time 0.016 seconds

A Study on Failure Analysis of Low Pressure Turbine Blade Subject to Fatigue Load (피로하중을 받은 저압 터빈 블레이드의 파손해석에 관한 연구)

  • 홍순혁;이동우;조석수;주원식
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.298-304
    • /
    • 2001
  • Turbine blade is subject to force of three types ; the torsional force by torsional mount, the centrifugal force by the rotation of rotor and the cyclic bending force by steam pressure. The cyclic bending force was a main factor on fatigue strength. SEM fractography in root of turbine blade showed micro-clack width was not dependent on stress intensity factor range. Especially, fatigue did not exist on SEM photograph in root of turbine blade. To clear out the fracture mechanism of turbine blade, nanofractography was needed on 3-dimensional crack initiation and crack growth with high magnification. Fatigue striation partially existed on AFM photograph in root of turbine blade. Therefore, to find a fracture mechanism of the torsion-mounted blade in nuclear power plant, the relation between stress intensity factor range and surface roughness measured by AFM was estimated, and then the load amplitude ΔP applied to turbine blade was predicted exactly by root mean square roughness.

  • PDF

Phase Imaging of Worn Surface of TiN Coating and Interpretation by Force Spectroscopy

  • Hyo Sok;Chizhik, S-A;I Luzinov
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.69-75
    • /
    • 2000
  • The paper compares topography, phase contrast and force spectroscopy in atomic force microscopy data for evaluating the microheterogeneity of surface layer. The worn surface of ion-plated TiN coating was measured using both a laboratory-built and a commercial AFM. The results of analysis revealed structural and micromechanical heterogeneity of the worn surfaces. We demonstrated that the phase image allows relatively qualitative estimation of elastic modulus of the sample surface. The tribolayer formed in the worn surface possessed much lower stiffness than the original coating. It is shown that the most stable phase imaging is provided with a stiff cantilever. In this case, phase contrast is well conditioned, first of all, by microheterogeneity of elastic properties of the investigated surfaces. In this study an attempt was also made to correlate the results of phase imaging with that of the farce spectroscopy. The joint analysis of information on the surface properties obtained by the phase imaging and quantitative data measured with the force spectroscopy methods allows a better understanding of the nature of the surface micromechanical heterogeneity.

  • PDF

Preparation of Chitosan-coated Magnetite Nanoparticles (키토산이 피복된 나노 크기의 자성체 분말 제조)

  • Cho, Jun-Hee;Ko, Sang-Gil;Ahn, Yang-Kyu;Song, Ki-Chang;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.102-106
    • /
    • 2006
  • Magnetic nanoparticles can be used for a variety of biomedical applications. They can be used in the targeted delivery of therapeutic agents in vivo, in the hyperthermic treatment of cancers. in magnetic resonance (MR) imaging as contrast agents and in the biomagnetic separations of biomolecules. We have synthesized magnetite $(Fe_3O_4)$ nanoparticles using chemical coprecipitation technique with sodium oleate as surfactant. Nanoparticle size can be varied from 2 to 8nm by controlling the sodium oleate concentration. Magnetite phase nanoparticles could be observed from X-ray diffraction. Magnetic colloid suspensions containing particles with sodium oleate and chitosan have been prepared. Nanoparticles, both oleate-coated and chitosan-coated, have been characterized by several techniques. Atomic farce microscope (AFM) was used to image the coated nanoparticles. Magnetic hysteresis measurement were performed using a superconducting quantum interference device (SQUID) magnetometer at room temperature to investigate the magnetic properties of the magnetite nanoparticles. The SQUID measurements revealed superparamagnetism of nanoparticles.