• Title/Summary/Keyword: AEA system

Search Result 18, Processing Time 0.023 seconds

Design of FLC for High-Angle-of-Attack Flight Using Adaptive Evolutionary Algorithm

  • Won, Tae-Hyun;Hwang, Gi-Hyun;Park, June-Ho;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.187-196
    • /
    • 2003
  • In this paper, a new methodology of evolutionary computations - An Adaptive Evolutionary Algorithm (AEA) is proposed. AEA uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations : global search capability of GA and local search capability of ES. In the reproduction procedure, the proportions of the population by GA and ES are adaptively modulated according to the fitness. AEA is used to. designing fuzzy logic controller (FLC) for a high-angle-of-attack flight system for a super-maneuverable version of F-18 aircraft. AEA is used to determine the membership functions and scaling factors of an FLC. The computer simulation results show that the FLC has met both robustness and performance requirements.

PC Cluster based Parallel Adaptive Evolutionary Algorithm for Service Restoration of Distribution Systems

  • Mun, Kyeong-Jun;Lee, Hwa-Seok;Park, June-Ho;Kim, Hyung-Su;Hwang, Gi-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.435-447
    • /
    • 2006
  • This paper presents an application of the parallel Adaptive Evolutionary Algorithm (AEA) to search an optimal solution of the service restoration in electric power distribution systems, which is a discrete optimization problem. The main objective of service restoration is, when a fault or overload occurs, to restore as much load as possible by transferring the de-energized load in the out of service area via network reconfiguration to the appropriate adjacent feeders at minimum operational cost without violating operating constraints. This problem has many constraints and it is very difficult to find the optimal solution because of its numerous local minima. In this investigation, a parallel AEA was developed for the service restoration of the distribution systems. In parallel AEA, a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner are used in order to combine the merits of two different evolutionary algorithms: the global search capability of the GA and the local search capability of the ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. After AEA operations, the best solutions of AEA processors are transferred to the neighboring processors. For parallel computing, a PC cluster system consisting of 8 PCs was developed. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through switch based fast Ethernet. To show the validity of the proposed method, the developed algorithm has been tested with a practical distribution system in Korea. From the simulation results, the proposed method found the optimal service restoration strategy. The obtained results were the same as that of the explicit exhaustive search method. Also, it is found that the proposed algorithm is efficient and robust for service restoration of distribution systems in terms of solution quality, speedup, efficiency, and computation time.

Distribution System Reconfiguration Using the PC Cluster based Parallel Adaptive Evolutionary Algorithm

  • Mun Kyeong-Jun;Lee Hwa-Seok;Park June Ho;Hwang Gi-Hyun;Yoon Yoo-Soo
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.269-279
    • /
    • 2005
  • This paper presents an application of the parallel Adaptive Evolutionary Algorithm (AEA) to search an optimal solution of a reconfiguration in distribution systems. The aim of the reconfiguration is to determine the appropriate switch position to be opened for loss minimization in radial distribution systems, which is a discrete optimization problem. This problem has many constraints and it is very difficult to find the optimal switch position because of its numerous local minima. In this investigation, a parallel AEA was developed for the reconfiguration of the distribution system. In parallel AEA, a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner are used in order to combine the merits of two different evolutionary algorithms: the global search capability of GA and the local search capability of ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. After AEA operations, the best solutions of AEA processors are transferred to the neighboring processors. For parallel computing, a PC-cluster system consisting of 8 PCs·was developed. Each PC employs the 2 GHz Pentium IV CPU, and is connected with others through switch based fast Ethernet. The new developed algorithm has been tested and is compared to distribution systems in the reference paper to verify the usefulness of the proposed method. From the simulation results, it is found that the proposed algorithm is efficient and robust for distribution system reconfiguration in terms of the solution quality, speedup, efficiency, and computation time.

Improved Micrometric Properties of Pyridostigmine Bromide, a Highly Hygroscopic Drug, through Microenccapsulation (고인습성 약물인 피리도스티그민의 마이크로캅셀화에 의한 분체 특성의 개선)

  • Kim, Dae-Suk;Kim, In-Wha;Chung, Suk-Jae;Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.1
    • /
    • pp.41-45
    • /
    • 2002
  • The purpose of this study is to microencapsulate a highly hygroscopic drug, pyridostigmine bromide (PB), with a waterproof wall material, in order to increase the flowability of the drug particles. Polyvinylacetaldiethylaminoacetate (AEA), Eugragit E and Eugragit RS were examined as the wall materials. Microcapsules containing PB were prepared by the evaporation technique in an acetone/liquid paraffin system using aluminum tristearate as a core material, and evaluated for drug encapsulation efficiency, surface morphology, particle size and drug dissolution. The encapsulation of PB in the wall material was almost complete. Among the wall materials examined, AEA exhibited the most excellency in shape, surface texture, flowability, size distribution of microcapsules. Above results suggest that AEA would be a potential wall material for microcapsulation of highly hygroscopic drugs, such as PB. Through microencapsulation with AEA, inconvenience of handling of PB powders encountered in the process of weighing and packing the powders to tableting die or capsule body could be greatly improved.

Implementation and Design of a Fuzzy Power System Stabilizer Using an Adaptive Evolutionary Algorithm

  • Hwang, Gi-Hyun;Lee, Min-Jung;Park, June-Ho;Kim, Gil-Jung
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.4
    • /
    • pp.181-190
    • /
    • 2003
  • This paper presents the design of a fuzzy power system stabilizer (FPSS) using an adaptive evolutionary algorithm (AEA). AEA consists of genetic algorithm (GA) for a global search capability and evolution strategy (ES) for a local search in an adaptive manner when the present generation evolves into the next generation. AEA is used to optimize the membership functions and scaling factors of the FPSS. To evaluate the usefulness of the FPSS, we applied it to a single-machine infinite bus system (SIBS) and a power system simulator at the Korea Electrotechnology Research Institute. The FPSS displays better control performance than the conventional power system stabilizer (CPSS) for a three-phase fault in heavy load, which is used when tuning FPSS. To show the robustness of the FPSS, it is applied with disturbances such as change of mechanical torque and three-phase fault in nominal and heavy load, etc. The FPSS also demonstrates better robustness than the CPSS. Experimental results indicate that the FPSS has good system damping under various disturbances such as one-line to ground faults, line parameter changes, transformer tap changes, etc.

A Study on State Estimation in Power Systems Using Adaptive Evolutionary Algorithm (적응진화 알고리즘을 이용한 전력계통의 상태추정에 관한 연구)

  • Jeong, Hee-Myung;Kim, Hyung-Su;Park, June-Ho;Lee, Hwa-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.214-215
    • /
    • 2006
  • In power systems, the state estimation takes an important role in security control. At present, the weighted least squares(WLS) method has been widely used to the state estimation computation. This paper presents an application of Adaptive Evolutionary Algorithm(AEA) to state estimation in power systems. AEA is a optimization method to overcome the problems of classical optimization. AEA is employed to solve state estimation on the 6 bus system.

  • PDF

Design of Fuzzy Logic Controller of HVDC using an Adaptive Evolutionary Algorithm (적응진화 알고리즘을 이용한 초고압 직류계통의 퍼지제어기 설계)

  • Choe, Jae-Gon;Hwang, Gi-Hyeon;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.5
    • /
    • pp.205-211
    • /
    • 2000
  • This paper presents an optimal design method for fuzzy logic controller (FLC) of HVDC using an Adaptive Evolutionary Algorithm(AEA). We have proposed the AEA which uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary algorithms. The AEA is used for tuning fuzzy membership functions and scaling constants. Simulation results show that disturbances are well damped and the dynamic performances of FLC have better responses than those of PD controller when AC system load changes suddenly.

  • PDF

Optimum Setting of Overcurrent Relay in Distribution Systems Using Adaptive Evolutionary Algorithm (적응진화 알고리즘을 이용한 배전계통의 과전류보호계전기 최적 정정치 결정)

  • Jeong, Hee-Myung;Park, June-Ho;Lee, Hwa-Seok;Mun, Kyeong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.252-253
    • /
    • 2006
  • This paper presents OC relay coordination to protect distribution system by Adaptive Evolutionary Algorithm(AEA). AEA is a optimization method to overcome the problems of classical optimization. The results show that the proposed method can improve more optimum relay settings than present available methods.

  • PDF

Optimal Setting of Overcurrent Relay in Distribution Systems Using Adaptive Evolutionary Algorithm (적응진화연산을 이용한 배전계통의 과전류계전기 최적 정정치 결정)

  • Jeong, Hee-Myung;Lee, Hwa-Seok;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1521-1526
    • /
    • 2007
  • This paper presents the application of Adaptive Evolutionary Algorithm (AEA) to search an optimal setting of overcurrent relay coordination to protect ring distribution systems. The AEA takes the merits of both a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner to use the global search capability of GA and the local search capability of ES. The overcurrent relay settings and coordination requirements are formulated into a set of constraint equations and an objective function is developed to manage the overcurrent relay settings by the Time Coordination Method. The domain of overcurrent relays coordination for the ring-fed distribution systems is a non-linear system with a lot of local optimum points and a highly constrained optimization problem. Thus conventional methods fail in searching for the global optimum. AEA is employed to search for the optimum relay settings with maximum satisfaction of coordination constraints. The simulation results show that the proposed method can optimize the overcurrent relay settings, reduce relay mis-coordinated operations, and find better optimal overcurrent relay settings than the present available methods.

Design of a Fuzzy Logic Controller Using an Adaptive Evolutionary Algorithm for DC Series Motors (적응진화 알고리즘을 사용한 DC 모터 퍼지 제어기 설계에 관한 연구)

  • Kim, Dong-Wan;Hwang, Gi-Hyun;Lee, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1019-1028
    • /
    • 2007
  • In this paper, adaptive evolutionary algorithm(AEA) is proposed, which uses both genetic algorithm(GA) with good global search capability and evolution strategy(ES) with good local search capability in an adaptive manner, when population evolves to the next generation. In the reproduction procedure, proportion of the population for GA and ES is adaptively determined according to their fitness. The AEA is used to design membership functions and scaling factors of the fuzzy logic controller(FLC). To evaluate the performance of the proposed FLC design method, we make an experiment on the FLC for the speed control of an actual DC series motor system with nonlinear characteristics. Experimental results show that the proposed controller has better performance than PD controller.