• Title/Summary/Keyword: AE monitoring

Search Result 494, Processing Time 0.024 seconds

Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method

  • Caesarendra, W.;Park, J.H.;Choi, B.H.;Kosasih, P.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.388-393
    • /
    • 2012
  • Vibration condition monitoring at low rotational speeds is still a challenge. Acoustic emission (AE) is the most used technique when dealing with low speed bearings. At low rotational speeds, the energy induced from surface contact between raceway and rolling elements is very weak and sometimes buried by interference frequencies. This kind of issue is difficult to solve using vibration monitoring. Therefore some researchers utilize artificial damage on inner race or outer race to simplify the case. This paper presents vibration signal analysis of low speed slewing bearings running at a low rotational speed of 15 rpm. The natural damage data from industrial practice is used. The fault frequencies of bearings are difficult to identify using a power spectrum. Therefore the relatively improved method of empirical mode decomposition (EMD), ensemble EMD (EEMD) is employed. The result is can detect the fault frequencies when the FFT fail to do it.

  • PDF

Life Prediction by Retardation Behavior of Fatigue Crack and its Nondestructive Evaluation (피로균열의 지연거동에 따른 수명예측 및 비파괴평가)

  • Nam, Ki-Woo;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.36-48
    • /
    • 1999
  • Fatigue life and crack retardation behavior after penetration were experimentally examined using surface pre-cracked specimens of aluminium alloy 5083. The Wheeler model retardation parameter was used successfully to predict crack growth behavior after penetration. By using a crack propagation rule, the change in crack shape after penetration can be evaluated quantitatively. Advanced, waveform-based acoustic emission (AE) techniques have been successfully used to evaluate signal characteristics obtained form fatigue crack propagation and penetratin behavior in 6061 aluminum plate with surface crack under fatigue stress. Surface defects in the structural members are apt to be origins of fatigue crack growth, which may cause serious failure of the whole structure. The nondestructive analysis on the crack growth and penetration from these defects may, therefore, be one of the most important subjects on the reliability of the leak before break (LBB) design. The goal of the present study is to determine if different sources of the AE could be identified by characteristics of the waveforms produced from the crack growth and penetration. AE signals detected in four stages were found to have different signal per stage. With analysis of waveform and power spectrum in 6061 aluminum alloys with a surface crack, it is found to be capabilities on real-time monitoring for the crack propagation and penetration behavior of various damages and defects in structural members.

  • PDF

A Study on the Monitoring of Grinding Stability Using AE Sensor in Electrolytic In-Process Dressing Grinding (전해 인프로세스 드레싱 연삭에서 AE를 이용한 가공안정성 감시에 관한 연구)

  • Kim, Tae-Wan;Lee, Jong-Ryul;Lee, Deug-Woo;Song, Ji-Bok;Choi, Dae-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1011-1017
    • /
    • 1999
  • Electrolytic in-process dressing grinding technique which enables application of metal bond wheels with fine superabrasives in mirror surface grinding operations has developed. It is possible to make efficient precision machining of hard and brittle material such as ceramic and hard metal by the employment of this technique. However, in order to ensure the success of performances such as efficient machining, surface finish, and surface quality, it is important to sustain the insulating layer that has sharply exposed abrasives in wheel surface. Using AE(Acoustic Emission) sensor, this paper will show whether the insulating layer sustains stably or not in real grinding time. And by comparing AErms value and surface roughness their thresholds for stable electrolytic in-process dressing grinding will be determined.

Interfacial Properties of Electrodeposited Carbon Fibers Reinforced Epoxy Composites Using Fragmentation Technique and Acoustic Emission

  • Yeong-Min Kim;Joung-Man Park;Ki-Won Kim;Dong-Jin Yoon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.28-31
    • /
    • 1999
  • Carbon fiber/epoxy composites using electrodeposited monomeric and polymeric coupling agents were compared with the dipping and the untreated cases. Treating conditions such as time, concentration and temperature were optimized. Four-fibers embedded micro-composites were prepared for fragmentation test. Interfacial properties of four-fiber composites with different surface treatments were investigated with simultaneous acoustic emission (AE) monitoring. The microfailure mechanisms occurring from fiber break, matrix and interlayer crackings were examined by AE parameters and an optical microscope. It was found that interfacial shear strength (IFSS) of electrodeposited carbon fibers was much higher than the other cases under dry and wet conditions. Well separated and different-shaped AE groups occurs for the untreated and ED treated case, respectively.

  • PDF

Strength failure behavior of granite containing two holes under Brazilian test

  • Huang, Yan-Hua;Yang, Sheng-Qi;Zhang, Chun-Shun
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.919-933
    • /
    • 2017
  • A series of Brazilian tests under diameter compression for disc specimens was carried out to investigate the strength and failure behavior by using acoustic emission (AE) and photography monitoring technique. On the basis of experimental results, load-displacement curves, AE counts, real-time crack evolution process, failure modes and strength property of granite specimens containing two pre-existing holes were analyzed in detail. Two typical types of load-displacement curves are identified, i.e., sudden instability (type I) and progressive failure (type II). In accordance with the two types of load-displacement curves, the AE events also have different responses. The present experiments on disc specimens containing two pre-existing holes under Brazilian test reveal four distinct failure modes, including diametrical splitting failure mode (mode I), one crack coalescence failure mode (mode II), two crack coalescences failure mode (mode III) and no crack coalescence failure mode (mode IV). Compared with intact granite specimen, the disc specimen containing two holes fails with lower strength, which is closely related to the bridge angle. The failure strength of pre-holed specimen first decreases and then increases with the bridge angle. Finally, a preliminary interpretation was proposed to explain the strength evolution law of granite specimen containing two holes based on the microscopic observation of fracture plane.

Analysis of Propagation Characteristics of Acoustic Signal in Insulation Oil (음향신호의 유중 전파특성 분석)

  • Yun, Min-Young;Park, Kyoung-Soo;Wang, Guoming;Kim, Sun-Jae;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.114-119
    • /
    • 2016
  • This paper dealt with the propagation characteristics of acoustic signal in insulation oil for the purpose of improving the reliability of AE (acoustic emission) method used for condition monitoring of oil-immersed transformers. A discharge source was placed in insulation oil and AE sensors ($f_c$ :140 kHz) were attached on the oil tank to study the changes of velocity and propagation path with the depth and distance. The average velocity was 1,436 m/s and the velocity decreased with the increase of depth from the oil surface to 430 mm. The propagation paths were classified into three sections by the shortest reflection path of the detected signal. The minimum distinguishable distance in each section was 70 mm. It was also verified that PD (partial discharge) with a magnitude over than 500 pC can be detected by the AE sensors.

Nondestructive Testing and Applications for Electric Power Plant Equipments by Acoustic Emissin Technology (음향방출기술에 의한 발전설비 비파괴검사 및 응용)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.396-409
    • /
    • 2004
  • Diagnosis f structural integrity is the basis for correct treatment of and countermeasures against progressive structural abnormalities. An exact diagnosis is at present the most reliable means for determining the soundness of structures during power plant operations. Acoustic emission(AE) technology has recently strengthened its application base, and practitioners' understanding of the technique's fundamentals. This paper presents the results of a survey and assessment on AE monitoring applications in nuclear, fossil and hydraulic power plant. The main objective of this paper was to obtain information on various applications of AE technology in electric power plant.

Characteristics of AE Signals of Matrix Cracks in Composites Due to the Different Specimen Shapes (시편 형상에 따른 복합재료의 모재균열 신호특성)

  • 방형준;박상욱;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.39-43
    • /
    • 2002
  • As the concept of the smart structure, monitoring of acoustic emission (AE) can be applied to inspect the fracture of the entire structure in operating condition using built-in sensors. The objective of this study is to find the characteristics of matrix crack signals in composites due to the different specimen shapes. To detect matrix crack signals, we performed tensile tests by changing the thickness, width and length of the specimen. For the quantitative evaluation, time frequency analysis such as short-time Fourier transform (STFT) was used to characterize the matrix crack signals from PZT sensor. The experimental result shows the distinctive signal features in frequency domain due to the different specimen shapes.

  • PDF

Leak Evaluation for Power Plant Valve Using Multi-Measuring Method

  • Lee, Sang-Guk;Park, Jong-Hyuck;Kim, Young-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.469-476
    • /
    • 2008
  • Condition based maintenance(CBM) for the preventive diagnosis of important equipments related to safety or accident in power plant is essential by using the suitable methods based on actual power plant conditions. To improve the reliability and accuracy of the measured value at the minute leak situation, and also to monitor continuously internal leak condition of power plant valve, the development of a diagnosis and monitoring technique using multi-measuring method should be performed urgently. This study was conducted to estimate the feasibility of multi-measuring method using three different methods such as acoustic emission(AE) method, thermal image measurement and temperature difference$({\Delta}T)$ measurement that are applicable to internal leak diagnosis for the power plant valve. From the experimental results, it was suggested that the multi-measuring method could be an effective way to precisely diagnose and evaluate internal leak situation of valve.

Signal Characteristics of Acoustic Emission from Welded Exhaust Flange for Fatigue Fracture Prediction (배기계 플랜지 용접부 피로파괴 예측을 위한 음향방출 신호 특성)

  • Son, Min-Young;Choi, Jung-Hwang;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.905-908
    • /
    • 2007
  • The purpose of this work is to obtain fundamental data about fatigue crack detection of the welded exhaust flange by using the AE method. The acoustic emission method as a nondestructive evaluation is one of high technical test for realtime monitoring in the dangerous industry fields. Signal analysis of both AE sensor and accelerometer for fatigue crack failure are presented in this paper.

  • PDF