• Title/Summary/Keyword: AE Signals

Search Result 386, Processing Time 0.025 seconds

A study on the behaviors of acoustic emission and cutting force signals in different helix angle endmillingz (부등각 엔드밀 가공시 음향방출신호와 절삭력 거동에 관한 연구)

  • 김영수;김원일;이윤경;왕덕현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.239-244
    • /
    • 2002
  • This study shows how the change of helix angle for different helix angle end mill affects machining accuracy. It was verified that cutting forces are remarkably low when endmill has helix angle of different helix angle $25^{\circ}\;, \; 31^{\circ}\; , \; 37^{\circ}$and AE signals have less relationship with the chance of helix angle Moreover, as the number of rotations are increased, the AE signals are increased with the proportion to the number but cutting forces are inversely proportional to the rotation.

  • PDF

A Study on the Characteristics of AE Signals by Tool wear (공구마모에 따른 음향방출신호 특성 연구)

  • 조종래;원종식;정윤교
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.95-100
    • /
    • 1995
  • Automatic monitoring of cutting process is one of the most important technology for increasing the stability and the reliability of unmanned manufacturing system. In this study, basic methods which use the acoustic emission (AE) signals and sutting forces proposed to monitor tool wear (flank wear) quantitatively. Fist, in order to detect flank wear, it was investigated influence of cutting conditions, that is, cutting velocity, feed and depth of cut, on AE signals (AErems) and cutting forces. Furthermore,the relationship flank wear between AErems and cutting forces were discussed.

  • PDF

AE센서와 감지판을 이용한 칩 형태 감지에관한 연구

  • 윤재웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.300-304
    • /
    • 1993
  • Chip formation control is an important problem in the automation of manufacturing process, since the continuous chip can cause catastrophic failures of the tooling and entangle the workpiece causing damage. However, it is impossible to predict chip form correctly due to the complex nature of cutting process. In order to detect the chip form for unmanned manufacturing, a new identification method is proposed. The feasibility of using acoustic emission signals from the sensing plate for identification of chip form is investigated. Experiments were conducted under the various cutting conditions. When the acoustic emission sensor is attached to the sensing plate, it turns out that the moving averaged AE signals correlated well with the collision of segmented chips with the plate. The sensitivity of moving averaged AE signals to chip congestions due to continuous chip formation is illustrated as well.

A experimental study on the detection of the signals which are the new and worn end mills working in the machining center (엔드밀의 마모와 신호변화에 관한 실험적 연구)

  • 이창희;조택동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.975-979
    • /
    • 2002
  • This paper studies the indirect parameters when the new and worn end mill working in the machining center. The parameter output methods are cutting force, current values and AE signals. In the result, when the worn end mill operating, cutting forces increase the 14.71〔N〕, current values increase the 2.917〔A〕 and 1.168〔A〕 according to the spindle mote. and feed motor, and AE signals increase the 0.588$\times$10$^{-5}$ 〔A〕. We can use these parameters in the detection of end mill wear.

  • PDF

A Study on Determination of $J_{IC}$ by Time-Frequency Analysis Method (시간-주파수 해석법에 의한 $J_{IC}$결정에 관한 연구)

  • Nam, Gi-U;An, Seok-Hwan;Kim, Bong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.765-771
    • /
    • 2001
  • Elastic-plastic fracture toughness JIC can be used a s an effective design criterion in elastic-plastic fracture mechanics. Among the JIC test methods approved by ASTM, unloading compliance method was used in this study. In order to examine the relationship between fracture behavior of JIC test and AE signals, the post processing of AE signals has been carried out by Short Time Fourier Transform(STFT), one of the time-frequency analysis methods. The objective of this study is to evaluate the application of characterization of AE signals for unloading compliance method of JIC test. As a result of time-frequency analysis, we could extract the AE from the raw signal and analyze the frequencies in AE signal at the same time. AE signal generated by elastic-plastic fracture of material has some different aspects at elastic and plastic ranges, or the first portion of crack growth by fracture. First of all, increased energy recorded and detected by using AE count method increase rapidly from the start of ductile fracture. The variation of main frequency range with time-frequency analysis method could be confirmed. We could know fracture behavior of interior material by examination AE characteristics generated in real-time when elastic-plastic fracture occurred in material under loading.

A Study of the Development of PC-Based Source Location System using Acoustic Emission Technique (음향방출기법을 이용한 PC기반 위치표정시스템 개발에 관한 연구)

  • Lee, M.R.;Lee, J.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.205-211
    • /
    • 2003
  • Acoustic emission (AE) technique has been applied to not only mechanical property testing but also on-line monitoring of the el)tire structure or a limit zone only. Although several AE devices have already been developed for the on-line monitoring, the price of these systems is very high and it is difficult for the field to apply yet. In this study, wc developed a specially designed PC-based source location system using the A/D board. The source location technique is very important to identify the source, such as crack, leak detection. However, since the AE waveforms obtained from transducers are very difficult to distinguish the defect signals, therefore, it is necessary to consider the signal analyses of the transient waveform. Wavelet Transform (WT) is a powerful tool for processing transient signals with temporally varying spectra that helps to resolve high and low frequency transients components effectively In this study, the analyses of the AE signals are presented by employing the WT analyses. AE results are compared the PC-based source location system using A/D board with the commercial AE system.

Analysis of Compressive Deformation Behaviors of Aluminum Alloy Using a Split Hopkinson Pressure Bar Test with an Acoustic Emission Technique (SHPB 시험과 음향방출법을 이용한 알루미늄 합금의 압축 변형거동 분석)

  • Kim, Jong-Tak;Woo, Sung-Choong;Sakong, Jae;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.891-897
    • /
    • 2013
  • In this study, the compressive deformation behaviors of aluminum alloy under high strain rates were investigated by means of a SHPB test. An acoustic emission (AE) technique was also employed to monitor the signals detected from the deformation during the entire impact by using an AE sensor connected to the specimen with a waveguide in real time. AE signals were analyzed in terms of AE amplitude, AE energy and peak frequency. The impacted specimen surface and side area were observed after the test to identify the particular features in the AE signal corresponding to the specific types of damage mechanisms. As the strain increased, the AE amplitude and AE energy increased whereas the AE peak frequency decreased. It was elucidated that each AE signal was closely associated with the specific damage mechanism in the material.

ESR-based Identification of Radiation-Induced Free Radicals in Gamma-Irradiated Basil and Clove Using Different Sample Pre-Treatments (감마선 조사된 바질과 정향의 전처리방법에 따른 ESR Spectra 판별 특성)

  • Kwak, Ji-Young;Ahn, Jae-Jun;Akram, Kashif;Kwon, Joong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.10
    • /
    • pp.1454-1459
    • /
    • 2012
  • An improved detection of radiation-induced paramagnetic faults was developed to identify the irradiation status of basil and clove. The effectiveness of different sample pretreatments, including freeze-drying (FD), oven-drying (OD), alcoholic-extraction (AE), and water-washing and alcoholic-extraction (WAE), were examined. All non-irradiated samples showed a single central signal ($g_0$=2.006), whereas radicals representing two additional side peaks ($g_1$=2.023 and $g_2$=1.986) with a mutual distance of 6 mT were detected in the irradiated samples. AE and WAE produced the best results for irradiated clove in terms of intensities of radiation-specific ESR signals and their ratios to the central signal. However, FD provided the highest intensities of radiation-specific ESR signals for basil, whereas their ratios to the major signal were better in the cases of AE and WAE. Signal noise, particularly due to $Mn^{2+}$ signals, was observed, whereas it decreased in AE and WAE pretreatments. Based on our results, AE and WAE can improve the detection conditions for radiation-specific ESR signals in irradiated samples.

A Study on Fracture Behaviors of Single-Edge-Notched Glass Fiber/Aluminum Laminates Using Acoustic Emission (음향방출법을 이용한 편측노치를 갖는 유리섬유/알루미늄 적층판의 파괴거동 해석)

  • Woo Sung-Choong;Choi Nak-Sam
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.1-12
    • /
    • 2005
  • Fracture behaviors of single-edge-notched monolithic aluminum plates and glass fiber/aluminum laminates under tensile loadings have been studied using acoustic emission(AE) monitoring. AE signals from monolithic aluminum could beclassified into two different types. For glass fiber/aluminum laminates, AE signals with high amplitude and long duration were additionally confirmed on FFT frequency analysis, which corresponded to macrocrack propagation and/or delamination. AE source location determined by signal arrival time showed the zone of fracture. On the basis of the above AE analysis and fracture observation, characteristic features of fracture processes of single-edge-notched glass fiber/aluminum laminates were elucidated according to different fiber ply orientations and fiber/aluminum lay-up ratios.

Assessment of Fatigue Damage of Adhesively Bonded Composite -Metal Joints by Acousto-Ultrasonics and Acoustic Emission (음향초음파와 음향방출에 의한 복합재료-금속 접착접합부의 피로손상 평가)

  • Kwon, Oh-Yang;Lee, Kyung-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.425-433
    • /
    • 2001
  • A correlation between fatigue damage and acousto-ultrasonic (AU) parameters has been obtained from signals acquired during fatigue loading of the single-lap joints of a carbon-fiber reinforced plastic (CFRP) laminates and A16061 plate. The correlation showed an analogy to those representing the stiffness reduction $(E/E_0)$ of polymer matrix composites by the accumulation of fatigue damage. This has been attributed to the transmission characteristics of acoustic wave energy through bonded joints with delamination-type defects and their influence on the change of spectral content of AU signals. Another correlation between fatigue cycles and the spectral magnitude of acoustic emission (AE) signals has also been found during the final stage of fatigue loading. Both AU and AE can be applied almost in real-time to monitor the evolution of damage during fatigue loading.

  • PDF