• Title/Summary/Keyword: AE 신호

Search Result 438, Processing Time 0.026 seconds

평면연삭의 가공특성감시와 이상상태 진단

  • 정인근;임영호;권동호;최만용;임순재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.155-160
    • /
    • 1993
  • 연삭가공은 숫돌의 입자가 마멸,파쇄,탈락,생성의 과정을 반복하면서 가공하는 것으로 연삭과정은 사용하는 연삭숫돌의 종류, 드레싱조건,연삭조건 등의 인자에 영행을 받는다. 더욱이 연삭숫돌의 연삭성능은 연삭가공시간의 경과에 따라 변화한다. 이때 요구되는 가공능률과 가공정밀도를 일정하게 유지하기 위해서는 연삭과정을 자동감시하고 이상상태를 진단하는 기술의 확립이 필수적이다. 본 연구에서는 AE를 이용하여 평면연삭에 있어서 연삭숫돌의 종류별(WA계 비트리파이드 및 레지노이드결하ㅂ제연삭숫돌 36종류) 및 연삭조건을 변화시켰을때의 연삭저항 및 AE 신호의 변화등을 In-process 검출하여 연삭가공상태의 자동감시 및 자동이상진단시스템을 위한 AE의 적용 가능성을 검토하였다.

  • PDF

A Study on Acoustic Emission Characteristics of MCrAlY Coated Material by Vacuum Plasma Spray Process (진공 플라즈마 용사공정에 의한 MCrAlY코팅재의 음향방출 신호 특성 연구)

  • 박진효;이구현;예경환;김정석;강명창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.921-924
    • /
    • 2004
  • This paper is to investigate a crack for plasma sprayed MCrAlY coated material by acoustic emission method in 4-point bending test. The CoNiCrAlY is coated on Inconel-718 by vacuum plasma spray process. Micro-hardness measurement was conducted by means of Micro Vickers-hardness indentor. The porosity of coating layer was measured using a SEM and Image Analyzer. AE monitoring system is composed of PICO type sensor, a wide band preamplifier(40dB), a PC and AE DSP(16/32 PAC) board. The AE count, Hit and energy of coating specimens is measured according to coating thickness.

  • PDF

절삭시의 채터진동에 대한 AE의 연구

  • 김덕환;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.155-159
    • /
    • 1993
  • 최근 많은 생산 시스템의 자동화에 있어서 기계의 상태 진단 및 감시는 설비의 중요도 및 특수성를 고려할때 매우 중요한 비중을 차지하게 되며, 생산 작업을 최적화할 수 있는적당한 제어기술의 필요성과 그에 대한 관심이 날로 증가 하고있는 실정이다. 특히 가공분야에서 많은 부분을 차지하고 있는 절삭가공작업은 기구의 구성이 복잡하고 불확정한 요인을 포함하고있으며 공구의 파손이나 채터진동에 의한 공작물의 정도의 변화가 급속히 발생하기 때문에 이를 위하여 인프로세서 감시가 절실히 요구되고 있다. 그러므로 비정상적인 절삭을 사전에 감지하여 대처함으로써 최적의 작업조 건하에서 안정된 절삭을 할 수 있고 공작기계의 유지, 보수에 경제적인 절감을 기대할 수 있다. 본 연구에서는 2차원 절삭과정중에 발생하는 채터진도에 있어서 절삭 파라메타와 AE 신호와의 관계를 실험적으로 규명하며, AE를 이용한 절삭과정을 모니터링 할 수 있는 방법에 대하여 연구한다.

The Abnormal Condition Monitoring of Rotary Compressor using Acoustic Emission (AE 신호를 이용한 회전형 압축기의 이상상태 감시)

  • Lee Kam-Gyu;Jung Ji-Hong;Kim Jeon-Ha;Kang Myung-Chang;Kim Jeong-Suk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.118-123
    • /
    • 2004
  • The compressor has one of important roles in refrigeration cycle and it determines refrigeration efficiency and quality This paper aims to monitor rotary compressors for room air conditioners by using Acoustic Emission(AE) technique. The reliability of rotary compressors has been evaluated through visual inspection on them after long term test. This paper describes methods for acquisition and processing AE raw signal to monitor the state of rotary compressor. A detecting method of abnormal compressor in real time is suggested and special-purpose monitoring system which can be applied to automatic manufacturing line is developed using one-chip microprocessor at low cost.

Comparison of current, vibration and acoustic emission signal occurred by gear misalignment (기어 정렬불량에 의한 전류, 진동 및 음향방출 신호의 비교 분석)

  • Gu, Dong-Sik;Lee, Jeong-Hwan;Kim, Byeong-Su;Yang, Bo-Suk;Choi, Byeong-Keun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.938-942
    • /
    • 2008
  • To detect the failures in machine, the signals of current, vibration and acoustic emission are widely used in industry. And unexpected failures of gears are not only extremely damaging but also lead to economic losses. In this paper, to detect the misalignment occurred at between two gears in gearboxes, the signals of current, vibration and AE were measured at gearbox and motor power line. FFT(Fast Fourier Transform) was used for current and vibration signal analysis to find gear failure frequency. Especially, the envelop analysis and wavelet transform were applied for AE signal. Therefore, compared with the results of three kinds of signal, the possibility of earily detection by AE is identified or checked.

  • PDF

An Estimation of Surface Roughness from the AE Signal in Surface Grinding (평면연삭시 AE 신호에 의한 표면거칠기 예측)

  • 송지복;이재경;곽재섭;이종렬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.115-119
    • /
    • 1996
  • An estimation of surface roughness value is a very important and difficult issue in grinding process. The definition of the D.A.R.F(Dimensionless Average Roughness Factor) has been made including the absolute average and tile standard deviation that are the parameters of the AE(Acoustic Emission) sign. The theoretical equation of the surface roughness applying the D.A.R.F has been derived from the regressive analysis and specified with respect to the availability through the experimental approach on the machine.

  • PDF

Discrimination of Acoustic Emission Signals using Pattern Recognition Analysis (형상인식법을 이용한 음향방출신호의 분류)

  • Joo, Y.S.;Jung, H.K.;Sim, C.M.;Lim, H.T.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.2
    • /
    • pp.23-31
    • /
    • 1990
  • Acoustic Emission(AE) signals obtained during fracture toughness test and fatigue test for nuclear pressure vessel material(SA 508 cl.3) and artificial AE signals from pencil break and ultrasonic pulser were classified using pattern recognition methods. Three different classifiers ; namely Minimum Distance Classifier, Linear Discriminant Classifier and Maximum Likelihood Classifier were used for pattern recognition. In this study, the performance of each classifier was compared. The discrimination of AE signals from cracking and crack surface rubbing was possible and the analysis for crack propagation was applicable by pattern recognition methods.

  • PDF

A experimental study on the detection of the signals which are the new and worn end mills working in the machining center (엔드밀의 마모와 신호변화에 관한 실험적 연구)

  • 이창희;조택동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.975-979
    • /
    • 2002
  • This paper studies the indirect parameters when the new and worn end mill working in the machining center. The parameter output methods are cutting force, current values and AE signals. In the result, when the worn end mill operating, cutting forces increase the 14.71〔N〕, current values increase the 2.917〔A〕 and 1.168〔A〕 according to the spindle mote. and feed motor, and AE signals increase the 0.588$\times$10$^{-5}$ 〔A〕. We can use these parameters in the detection of end mill wear.

  • PDF

Application of AE Sensor for Calibration of Depth of Cut in Micro-machining (마이크로 가공에서 절삭깊이 보정을 위한 AE 센서의 적용)

  • Kang, Ik-Soo;Kim, Jeong-Suk;Kim, Jeon-Ha
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.53-57
    • /
    • 2009
  • There are technical requirements to manufacture large size functional parts with not only simple geometries like a flat or spherical surface but also sculptured geometries. In addition, the required machining accuracy for these parts is becoming more severe. In general, the form accuracy of machined parts is determined by the relative position between workpiece and tool during machining process. To improve machining accuracy the relative position errors should be maintained within the required accuracy. This study deals with the estimation and calibration of depth of cut using the AE signal in micro-machining. Also, this sensing technique can be applied to detect the initial contact between workpiece and tool.

Monitoring Systems of a Grinding Trouble Utilizing Neural Networks(2nd Report) (신경망 회로를 이용한 연삭가공의 트러블 검지(II))

  • Kwak, J.S.;Kim, G.H.;Ha, M.K.;Song, J.B.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.57-63
    • /
    • 1996
  • Monitoring of grinding troble occurring during the process is classified into the quantitative data which depends upon a sensor and the qualitative knowledge which relies upon an empirical knowledge. Since grinding operation is highly related with a large amount of functional parameters, it is actually deficulty in copying wiht the grinding troubles through the process. To cope with grinding trouble, it is an effective monitoring systems when occurring the grinding process. The use of neural networks is an effective method of detection and/or monitroing on the grinding trouble. In this paper, four parameters which are derived from the AE(Acoustic Emission) signatures are identified, and grinding monitoring system utilized a back propagation learning algorithm of PDP neural networks is presented.

  • PDF