• 제목/요약/키워드: ADHESIVE PARAMETERS

검색결과 167건 처리시간 0.031초

굽힘 하중을 받는 딤플형 내부구조 금속 샌드위치 판재의 최적설계변수의 수식화 및 파손선도 (Formulation of Optimal Design Parameters and Failure Map for Metallic Sandwich Plates with Inner Dimpled Shell Structure Subject to Bending Moment)

  • 성대용;정창균;윤석준;안동규;양동열
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.127-136
    • /
    • 2006
  • Metallic sandwich plates with inner dimpled shell subject to 3-point bending have been analyzed and then optimized for minimum weight. Inner dimpled shells can be easily fabricated by press or roll with high precision and bonded with same material skin sheets by resistance welding or adhesive bonding. Metallic sandwich plates with inner dimpled shell structure can be optimally designed for minimum weight subject to prescribed combination of bending and transverse shear loads. Fundamental findings for lightweight design are presented through constrained optimization. Failure responses of sandwich plates are predicted and formulated with an assumption of narrow sandwich beam theory. Failure is attributed to four kinds of mechanisms: face yielding, face buckling, dimple buckling and dimple collapse. Optimized shape of inner dimpled shell structure is a hemispherical shell to minimize weight without failure. It is demonstrated that bending stiffness of sandwich plate is 2 or 3 times larger than solid plates with the same strength. Failure mode boundaries and iso-strength lines dependent upon the geometry and yield strain of the material are plotted with respect to geometric parameters on the failure map. Because optimal parameters of maximum strength for given material weight can be selected from the map, analytic solutions for maximum strength are expressed as a function of only material property and proposed strength. These optimal parameters match well with numerical optimal parameters.

High frequency measurement and characterization of ACF flip chip interconnects

  • 권운성;임명진;백경욱
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2001년도 추계 기술심포지움
    • /
    • pp.146-150
    • /
    • 2001
  • Microwave model and high-frequency measurement of the ACF flip-chip interconnection was investigated using a microwave network analysis. S-parameters of on-chip and substrate were separately measured in the frequency range of 200 MHz to 20 GHz using a microwave network analyzer HP8510 and cascade probe. And the cascade transmission matrix conversion was performed. The same measurements and conversion techniques were conducted on the assembled test chip and substrate at the same frequency range. Then impedance values in ACF flip-chip interconnection were extracted from cascade transmission matrix. ACF flip chip interconnection has only below 0.1nH, and very stable up to 13 GHz. Over the 13 GHz, there was significant loss because of epoxy capacitance of ACF. However, the addition of SiO$_2$filler to the ACF lowered the dielectric constant of the ACF materials resulting in an increase of resonance frequency up to 15 GHz. High frequency behavior of metal Au stud bumps was investigated. The resonance frequency of the metal stud bump interconnects is higher than that of ACF flip-chip interconnects and is not observed at the microwave frequency band. The extracted model parameters of adhesive flip chip interconnects were analyzed with the considerations of the characteristics of material and the design guideline of ACA flip chip for high frequency applications was provided.

  • PDF

내경 플라즈마 용사법에 의한 과공정 Al-Si 합금의 실린더 블록 보어 개발을 위한 기초연구 (Basic Research for Development of Hypereutectic Al-Si Alloyed Cylinder Block Bore by Plasma Spraying System for Internal Diameters)

  • 김병희;이형근;김혜성
    • 한국재료학회지
    • /
    • 제11권11호
    • /
    • pp.965-971
    • /
    • 2001
  • The objective of this study is to investigate the characteristics - microstructure, hardness, adhesive strength and friction coefficient - of the coatings with aging - treatment after optimizing internal- plasma spraying parameters for Al-30wt%Si powder as a basic research to manufacture the cylinder block bore for Al engine composed of Al-30wt%Si alloy on Al alloy, The optimum internal-plasma spraying parameters of Al-30wt%Si alloy are summarized as follows: voltage: 37.5V, current: 160A, working distance: 25mm, gun traverse speed: 4.5mm/s, rotating speed: 518m/min. The primary Si particles grew aggressively with increasing heat-treating temperature. The hardness of the as-sprayed coating was about Hv=275 but this value was abruptly decreased with increasing heat-treating temperature. And average friction coefficient of the coating was below 0.08 after heat treatment for 48h at $175^{\circ}C$.

  • PDF

Adhesive Properties, Extracellular Protein Production, and Metabolism in the Lactobacillus rhamnosus GG Strain when Grown in the Presence of Mucin

  • Sanchez, Borja;Saad, Naima;Schmitter, Jean-Marie;Bressollier, Philippe;Urdaci, Maria C.
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권6호
    • /
    • pp.978-984
    • /
    • 2010
  • This paper examines the probiotic bacterium Lactobacillus rhamnosus GG, and how it reacts to the presence of mucin in its extracellular milieu. Parameters studied included cell clustering, adhesion to mucin, extracellular protein production, and formation of final metabolites. L. rhamnosus GG was found to grow efficiently in the presence of glucose, N-acetylglucosamine, or mucin (partially purified or purified) as sole carbon sources. However, it was unable to grow using other mucin constituents, such as fucose or glucuronic acid. Mucin induced noticeable changes in all the parameters studied when compared with growth using glucose, including in the formation of cell clusters, which were easily disorganized with trypsin. Mucin increased adhesion of the bacterium, and modulated the production of extracellular proteins. SDS-PAGE revealed that mucin was not degraded during L. rhamnosus GG growth, suggesting that this bacterium is able to partially use the glucidic moiety of glycoprotein. This study goes some way towards developing an understanding of the metabolic and physiological changes that L. rhamnosus GG undergoes within the human gastrointestinal tract.

초음파 신호분석을 이용한 접착접합 이음의 파괴역학적 평가 (A Fracture Mechanics Approach to Adhesively Bonded Joint Using Ultrasonic Signal Analysis)

  • 한준영;오승규;윤송남;이원;장철섭;김민건;김환태
    • Journal of Welding and Joining
    • /
    • 제21권5호
    • /
    • pp.555-560
    • /
    • 2003
  • In automobile industry, it is necessary to reduce the weight from the view point of energy and environmental problems in these days. One of the ways for weight reduction is using adhesive aluminum structures. In this study, ultrasonic signals reflected from the adhesively bonded joint layer are used to evaluate the adhesively bonded joints. FFT is performed to determine bond-layer parameters such as effective thickness and frequency for adhesively bonded joint Al 6061 plates in comparison with the measured and theoretical ratios. And the parameters of ultrasonic wave and the J-integral are investigated to evaluate the adhesively bonded joint strength by DCB specimens.

Laser Welding Parameter Variations and its Application for Plastic Adhesion

  • Park, Sung-Jin;Park, Sung-Joon;Park, Hae-Young;Park, Jae-Wook;Sim, Ji-Young;Choi, Jin-Young;Kim, Hee-Je
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권1호
    • /
    • pp.112-117
    • /
    • 2007
  • a parametric investigation was conducted to evaluate the effect of the laser beam for plastic adhesion. To determine the best condition for plastic adhesion, the $CO_2$(wavelength $10.6{\mu}m$) and nd:yag(wavelength $10.6{\mu}m$) laser were experimented with. From the experiment results obtained, the nd:yag laser was revealed to be the most suitable for plastic adhesion. In this study, three adhesion parameters such as input power level, working time of laser beam and pps(pulse per second) were systematically adjusted for suitable adhesion. From these experiments, it was observed that the target plastic melted and was evaporated by the nd:yag laser. Furthermore, the relationships between adhesive surface by laser beam and above three parameters were discovered.

상압 플라즈마 표면처리를 통한 태양광모듈 커버글라스와 불소계 코팅의 응착력 향상 (Improved Adhesion of Solar Cell Cover Glass with Surface-Flourinated Coating Using Atmospheric Pressure Plasma Treatment)

  • 김태현;박우상
    • 한국전기전자재료학회논문지
    • /
    • 제31권4호
    • /
    • pp.244-248
    • /
    • 2018
  • We propose a method for improving the reliability of a solar cell by applying a fluorinated surface coating to protect the cell from the outdoor environment using an atmospheric pressure plasma (APP) treatment. An APP source is operated by radio frequency (RF) power, Ar gas, and $O_2gas$. APP treatment can remove organic contaminants from the surface and improve other surface properties such as the surface free energy. We determined the optimal APP parameters to maximize the surface free energy by using the dyne pen test. Then we used the scratch test in order to confirm the correlation between the APP parameters and the surface properties by measuring the surface free energy and adhesive characteristics of the coating. Consequently, an increase in the surface free energy of the cover glass caused an improvement in the adhesion between the coating layer and the cover glass. After treatment, adhesion between the coating and cover glass was improved by 35%.

Comparing intra-oral wound healing after alveoloplasty using silk sutures and n-butyl-2-cyanoacrylate

  • Suthar, Pratik;Shah, Sonal;Waknis, Pushkar;Limaye, Gandhali;Saha, Aditi;Sathe, Pranav
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제46권1호
    • /
    • pp.28-35
    • /
    • 2020
  • Objectives: The need for proper wound closure is of paramount importance after any intra-oral surgery. Various wound closure techniques have been described in literature using traditional non-absorbable suture materials. These include like synthetic absorbable sutures, surgical staples and tissue adhesives. Cyanoacrylates are among the most commonly used biocompatible tissue adhesives. To evaluate and compare intraoral wound healing using 3-0 silk sutures and n-butyl-2-cyanoacrylate after alveoloplasty. Materials and Methods: A total of 20 patients requiring bilateral alveoloplasty in the same arch (upper or lower) were included in this study. Patients with any pre-existing pathology or systemic disease were excluded. After alveoloplasty was performed, the wound was closed using 3-0 braided silk sutures on one side, and using n-butyl-2-cyanoacrylate bio adhesive on the other side. Patients were evaluated based on the following parameters: time required to achieve wound closure; the incidence of immediate and postoperative hemostasis; the time to the use of the first rescue medication; the side where pain first arises; and the side where wound healing begins first. Results: Compared to 3-0 silk sutures, cyanoacrylate demonstrated better hemostatic properties, reduced operative time, reduced postoperative pain and better wound healing. Conclusion: These data suggest that cyanoacrylate glue is an adequate alternative to conventional sutures to close the surgical wound after alveoloplasty, and better than are 3-0 silk sutures.

원주방향 관통균열을 갖는 원통형 쉘 구조의 패치보강 해석 (Analysis of Patched Cylindrical Shells with Circumferential Through-Wall Cracks)

  • 안재석;김영욱;우광성
    • 대한토목학회논문집
    • /
    • 제32권6A호
    • /
    • pp.411-418
    • /
    • 2012
  • 이 연구에서는 수치해석 실험을 통하여, 원주방향 관통균열을 갖는 원통형 쉘의 패치보강 전후의 거동에 대한 평가와 다양한 변수에 따른 패치보강 효과를 분석하였다. 해석 모델의 신뢰성을 높이기 위해, h-법 및 p-법에 기초한 모델링, 두 가지 방법이 동시에 고려되었다. 또한 선형탄성파괴역학 개념에 기초하여 에너지 방출률을 산정하기 위해, 등가영역적분법 및 가상균열확장법이 고려되었다. 해석 예제로서, 먼저 연구에서 수행된 h-법 및 p-법 유한요소 모델을 검증하기 위해, 패치 보강전의 인장력을 받는 관통 균열이 있는 쉘 구조물이 해석되었으며, 해석 결과값들과 여러 참고문헌 값들이 비교되었다. 그리고 패치 보강된 원통형 쉘 시스템에서의 접착제 두께, 접착제 전단탄성계수, 패치 두께, 패치 재료, 균열 길이 등의 여러 설계 변수에 대한 민감도 해석이 수행되었다.

Modeling of RC shear walls strengthened by FRP composites

  • Sakr, Mohammed A.;El-khoriby, Saher R.;Khalifa, Tarek M.;Nagib, Mohammed T.
    • Structural Engineering and Mechanics
    • /
    • 제61권3호
    • /
    • pp.407-417
    • /
    • 2017
  • RC shear walls are considered one of the main lateral resisting members in buildings. In recent years, FRP has been widely utilized in order to strengthen and retrofit concrete structures. A number of experimental studies used CFRP sheets as an external bracing system for retrofitting of RC shear walls. It has been found that the common mode of failure is the debonding of the CFRP-concrete adhesive material. In this study, behavior of RC shear wall was investigated with three different micro models. The analysis included 2D model using plane stress element, 3D model using shell element and 3D model using solid element. To allow for the debonding mode of failure, the adhesive layer was modeled using cohesive surface-to-surface interaction model at 3D analysis model and node-to-node interaction method using Cartesian elastic-plastic connector element at 2D analysis model. The FE model results are validated comparing the experimental results in the literature. It is shown that the proposed FE model can predict the modes of failure due to debonding of CFRP and behavior of CFRP strengthened RC shear wall reasonably well. Additionally, using 2D plane stress model, many parameters on the behavior of the cohesive surfaces are investigated such as fracture energy, interfacial shear stress, partial bonding, proposed CFRP anchor location and using different bracing of CFRP strips. Using two anchors near end of each diagonal CFRP strips delay the end debonding and increase the ductility for RC shear walls.