• Title/Summary/Keyword: ADHESIVE PARAMETERS

Search Result 167, Processing Time 0.021 seconds

Analytical Modeling of Carbon Nanotube Actuators (탄소나노튜브 액츄에이터의 이론적 모델링)

  • 염영일;박철휴
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1006-1011
    • /
    • 2004
  • Carbon nanotubes have outstanding properties which make them useful for a number of high-technology applications. Especially, single-walled carbon nanotube (SWNT), working under physical conditions (in aqueous solution) and converting electrical energy into mechanical energy directly, can be a good substitute for artificial muscle. The carbon nanotube structure simulated in this paper is an isotropic cantilever type with an adhesive tape which is sandwiched between two SWNTs. For predicting the geometrical and physical parameters such as deflection, slope, bending moment and induced force with various applied voltages, the analytical model for a 3 layer bimorph nanotube actuator is developed by applying Euler-Bernoulli beam theory. The governing equation and boundary conditions are derived from energy Principles. Also, the brief history of carbon nonotube is overviewed and its properties are compared with other functional materials. Moreover, an electro-mechanical coupling coefficient of the carbon nanotube actuator is discussed to identify the electro-mechanical energy efficiency.

Fatigue Assessment of Hybrid Composite Joint for the Tilting Car Body (틸팅차량용 Hybrid차체 접합체결부의 피로 특성 평가)

  • Jung, Dal-Woo;Kim, Duck-Jae;Choi, Se-Hyun;Seo, Sueng-Il;Choi, Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.260-263
    • /
    • 2005
  • Fatigue fracture behavior of a hybrid joint between side-panel and under-frame by riveting and adhesive bonding has been evaluated. Two kinds of joint specimens based on real geometry were fabricated for shearing test as well as bending test. Static and cyclic loadings were used for fatigue assessment. Fatigue fracture results obtained by such experiments were reflected in modifications of design parameters of the hybrid joint.

  • PDF

Fracture Characteristics and Stress Analysis of $Si_3N_4/SM45C$ Joint ($Si_3N_4/SM45C$ 접합부의 응력해석 및 파괴특성)

  • 김기성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.248-253
    • /
    • 1998
  • Recently, the uses of Ceramic/metal bonded joints, resin/metal joints, adhesive joints, composite materials which are composed of dissimiliar materials have increased in various industry fields. Since the ceramic/metal bonded joints material is made at a high temperature, residual stress distributions due to differences in material properties were investigated by varying material parameters. The two dimensional finite element analysis was performed to study residual stress distribution in Si3N4/SM45C bonded joint with a copper interlayer between the silicon nitride(Si3N4) and the structural carbon steel(SM45C) and 4-point bending tests were carried out under room temperature. Fracture surface and crack propagation path were observed using scanning electron microscope and characteristics of its fracture was discussed.

  • PDF

Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat
    • Coupled systems mechanics
    • /
    • v.9 no.5
    • /
    • pp.473-498
    • /
    • 2020
  • This paper presents a careful theoretical investigation into interfacial stresses in reinforced concrete foundation beam repairing with composite plate. The essential issue in the analysis of reinforced structures with composite materials is to understand the individual behaviour of each material and its interaction with the remaining ones. The present model is based on equilibrium and deformations compatibility requirements in and all parts of the repaired RC foundation beam, i.e., the reinforced concrete foundation beam, the composite plate and the adhesive layer. The theoretical predictions are compared with other existing solutions, By comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters such as the geometric characteristics and mechanical properties of the components of the repaired beam, as well as the geotechnical stresses of the soil are considered. This research is helpful for the understanding on mechanical behaviour of the interface and design of the composite-concrete hybrid structures.

A Methodological Study of the Wear-Resistant Property Improvement on the Thermal Spray Coating for Capstan (Capstan용 용사코팅의 내마모 특성 향상 방안)

  • 어순철
    • Journal of Powder Materials
    • /
    • v.7 no.2
    • /
    • pp.63-70
    • /
    • 2000
  • Thermal spray coating process has proven to be effective at producing hard, dense, wear resistance coatings on the relatively mild substrates. Among several spraying techniques, HVOF (High Velocity Oxygen Fuel) and plasma coating processes, which are preferentially used for the wear resistance application such as capstans, have been applied in this study. The effects of pre-treatment, it-process and post-treatment parameters on the wear and mechanical properties of WC+12%Co, Cr3C2 and Al2O3 powder coatings have been investigated and correlated with the microstructures. The results indicated that the carbide coating was more preferable to the oxide coatings and the post-treatments consisting of vacuum annealing and sealing on carbide coatings led to significant improvements in wear resistance, adhesive strength and coating phase stabilization over the other processing techniques in this application.

  • PDF

Parameter Study on R.C. Beam Strengthened with Steel Plate and Fiber Sheet (강판 및 섬유쉬트로 보강된 철근콘크리트 보의 매개변수 분석)

  • 유영준;박종섭;박홍석;정우태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.138-145
    • /
    • 2001
  • This paper presents F.E.M. analysis result about the behavior of R.C. beam repaired with steel plate and fiber sheet. The effect of repairing varies with reinforcement ratio of R.C. beam, plate thickness, numbers of fiber sheet, and repairing length, etc. F.E.M. analysis using a program, DIANA, was carried out taking these factors as parameter in this study. Analysis result shows that repaired R.C. beam behaves differently according to parameters and certain cases imply that repairing is useless or may lay structure in dangerous condition. F.E.M. model considers that interfacial behavior between different two parts of repaired beam is rigid based on an assumption that adhesive failure does not appear before yielding of reinforcement and its analysis shows the result coincides with that of experiment.

  • PDF

Fatigue Crack Growth Behavior of the Thin-to-Thick Type Stiffened Panels with Bonded Patch (접착 패칭된 박-후판 결합형 보강판의 피로균열성장 거동)

  • Rhee, Hwan-Woo;Kim, Seung-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.89-95
    • /
    • 2008
  • Fatigue cracked components often needs to be repaired during service. Standard repair schemes involve strengthening the component by connecting reinforcing members by means of rivets or welding by reducing the crack-tip stress intensity factors. Recent technological advances in fiber reinforced composite materials and adhesive bonding have led to the development of efficient repair schemes. In this study, the influence of various shape parameters on fatigue crack growth in the CCT type uniform thickness plates and the thin-ta-thick type stiffened panels repaired with woven fabric type Kevlar-Epoxy composite patch are studied experimentally.

Strength and Impact Damage Characteristics of A17075/CFRP Sandwitch Pannel by Using Automobiles (자동차용 경량화 A17075 / CFRP 샌드위치 판넬의 강도와 충격손상 특성)

  • Yoon, Han-Ki;Lee, Jong-Ho;Park, Yi-Hyun;Lee, Je-Heon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.295-300
    • /
    • 2002
  • To establish an optimum condition in the surface treatment and curing process will be an important parameters for the fabrication of multilayered hybrid composite materials, A17075/CFRP (CARALL : carbon fiber reinforce aluminum laminates). Effects of carbon fiber direction and thickness variation in tensile strength were investigated. And impact damage behavior of carbon fiber reinforce plastic (CFRP) and CARALL were investigated also, it was found that a partial stress increase in order of epoxy adhesive, A17075, CFRP. And the partial stress of CFRP carried out a great portion of applied stress. The impact damage resistance of CARALL was higher than that of CFRP. This is because both side Al sheet of CARALL absorb a great of impact damage.

  • PDF

Renovation of steel beams using by imperfect functionally graded materials plate

  • Daouadji, Tahar Hassaine;Abderezak, Rabahi;Rabia, Benferhat;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.851-860
    • /
    • 2021
  • In this paper, a new approach of interface stress analysis in steel beam strengthened by porous FGM (Functionally Graded Materials) is presented to calculate the shear stress in the hybrid steel beam and loaded by a uniformly distributed load. The results show that there exists a high concentration of shear stress at the ends of the imperfect FGM, which might result in premature failure of the strengthening scheme at these locations. A parametric study has been conducted to investigate the sensitivity of interface behavior to parameters such as the rigidity of FGM plate (degree of homogeneity), the porosity index of FGM and the thickness of adhesive all were found to have a marked effect on the magnitude of maximum shear stress in the FGM member. we can conclude that the new approach is general in nature and may be applicable to all kinds of materials.

Design of Preventing Deviation System of Magnet for high Speed Rotated Surface Mounted Permanent Magnet Synchronous Generator (고속으로 회전하는 표면부착형 영구자석 동기발전기의 마그넷 이탈방지 시스템 설계)

  • Kim, Youngmin;Kim, Jungsu;Park, Sunho;Lim, Minsoo;Bang, Johyug;Ryu, Jiyune
    • Journal of Wind Energy
    • /
    • v.5 no.1
    • /
    • pp.50-55
    • /
    • 2014
  • Surface Permanent-Magnetic-Synchronous-Generator (SPMSG) discussed in the present study has operational characteristics such as high rotational speed over 1,000 rpm and centrifugal force of 12 kN·m for each magnet. Structure-development analysis for the minimization of rotor-core weights and the maximization of thermal emission is performed by applying the aluminum-laminated cap which combines the advantages of IPM and SPM in order to overcome the difficulty that attaching the magnet to rotor-core only with an adhesive. In this study, the simulations in terms of structure and electromagnetic were performed with the variable parameters such as shape and thickness of laminated-cap and division method of magnet. As a result, condition for minimized centrifugal force with minimum loss is derived.