• 제목/요약/키워드: ACNR

검색결과 4건 처리시간 0.02초

ACNR가공송전선의 개발(II) - 전기적 특성 (The Development of ACNR Conductor(II) - Electric Properties)

  • 김상수;김병걸;이희웅;박주환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.629-630
    • /
    • 2005
  • ACSR(Aluminum Conductor Steel Reinforced)가공송전선은 교류전류의 흐름에 의하여 코어 (Core)부에 자기장이 발생되어 전력손실을 발생시킨다. 이로 인한 전력손실을 최소화 하는 방법으로는 코어의 재질을 자성체인 고탄소강선 대신에 비자성강으로 교체하는 방법이 있다. 본 연구에서는 기존의 고탄소강선 대신에 고강도 비자성강을 코어(Core)에 적용한 ACNR(Aluminum Conductor Nonmagnetic Steel Reinforced) 가공송전선을 개발하였다. ACNR 가공송전선의 전기적 특성시험에서 약 9%정도의 손실저감효과를 나타내었다.

  • PDF

ACNR가공송전선의 개발( I ) - 기계적 특성 (The Development of ACNR Conductor( I ) - Mechanical Properties)

  • 김상수;김병걸;이희웅;박주환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.635-636
    • /
    • 2005
  • 최근에 미국이나 러시아를 중심으로 가공승전선의 승전효율을 증대시키고자 하는 연구가 활발히 이루어지고 있으며 어느 정도 성과를 거두고 있다. ACSR가공송전선에서 교류전류의 흐름에 의하여 코어 (Core)에 자기장이 발생되어 투자율이 증가되고 이로 인하여 알루미늄층에서 전류밀도의 재 분포, skin effect 등으로 인하여 전력손실이 발생된다. 본 연구에서는 기존의 ACSR가공송전선의 코어 (Core)인 고탄소강선 대신에 비자성이면서 고강도인 새로운 강선을 코어재료로 채택한 ACNR(Aluminum Conductor Nonmagnetic Steel Reinforced)가공송전선을 개발하여 전력손실을 감소시켰다.

  • PDF

고강도 저손실 가공송전선의 개발(II) - 전기적 특성 (Development of High Strength and Low Loss Overhead Conductor(II) - Electric Properties)

  • 김병걸;김상수;박주환
    • 한국전기전자재료학회논문지
    • /
    • 제18권12호
    • /
    • pp.1159-1165
    • /
    • 2005
  • New conductor is developed by using high strength nonmagnetic steel(NM) wire as the core of overhead conductor This conductor is called ACNR overhead conductor(Aluminum Conductor Nonmagnetic Steel Reinforced). Formed by the combination of aluminum alloy wire and high strength nonmagnetic steel wire, it has about the same weight and diameter as conventional ACSR overhead conductor. To enhance properties beneficial in an electrical and mechanical conductor during the Process of high strength nonmagnetic steel wire, we made a large number of improvements and modifications in the working process, aluminum cladded method, and other process. ACNR overhead conductor, we successfully developed, has mechanical and electrical properties as good as or even better than conventional galvanized wire. Microstructure of raw material NM wire was austenite and then deformed martensite after drawing process. Strength at room temperature is about $180kgf/mm^2\~200kgf/mm^2$. The conductivity at 0.78 mm thickness of Aluminum cladded M wire is about $7\%$ IACS higher than $20\%$IACS of HC wire used as core of commercial ACSR overhead conductor. The corrosion resistance is about 3 times higher than that of HC wire.

고강도 저손실 가공송전선의 개발(I) - 기계적 특성 (Development of High Strength and Low Loss Overhead Conductor(I) - Mechanical Properties)

  • 김병걸;김상수;박주환
    • 한국전기전자재료학회논문지
    • /
    • 제18권12호
    • /
    • pp.1152-1158
    • /
    • 2005
  • New conductor is developed by using high strength nonmagnetic steel(NM) wire as the core of overhead conductor. This conductor is called ACNR overhead conductor(Aluminum Conductor Nonmagnetic Steel Reinforced). Formed by the combination of aluminum alloy wire and high strength nonmagnetic steel wire, it has about the same weight and diameter as conventional ACSR overhead conductor. To enhance properties beneficial in an electrical and mechanical conductor during the process of high strength nonmagnetic steel wire, we made a large number of improvements and modifications in the working process, aluminum cladded method, and other process. ACNR overhead conductor, we successfully developed, has mechanical and electrical properties as good as or even better than conventional galvanized wire. Microstructure of raw material M wire was austenite and then deformed martensite after drawing process. Strength at room temperature is about $180kgf/mm^2\~200kgf/mm^2$. NM wire developed as core of overhead conductor shows heat resistant characteristics higher than that of HC wire used as core of commercial ACSR overhead conductor, Strength loss was not occur at heat resistant test below $600^{\circ}C$. Fatigue strength of vibration fatigue is about $32kgf/mm^2\~35kgf/mm^2$ and that of tension-tension fatigue is $90kgf/mm^2\~120kgf/mm^2$ which is $50\~65\%$ of tensile strength.