• Title/Summary/Keyword: ACIR

Search Result 12, Processing Time 0.019 seconds

Adjacent Interference Analysis between M-WiMAX OFDMA/TDD and WCDMA FDD System in the 2.6 GHz Band Part I : Adjacent Interference Analysis in SISO System (2.6 GHz 대역에서 M-WiMAX OFDMA/TDD 시스템과 WCDMA FDD 시스템간의 상호 간섭 분석 Part I : SISO 시스템에서의 상호 간섭 분석)

  • Ko, Sang-Jun;Wang, Yu-Peng;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.573-587
    • /
    • 2007
  • In this paper, we analyze the adjacent interference between WCDMA and M-WiMAX systems in the 2.6GHz Band under the SISO (Single Input Single Output) configuration. The interference scenarios are characterized into 8 scenarios with different victim and interfering links. Among the 8 scenarios, we find that the most performance loss is observed in the scenarios of victim uplink suffering interference from downlink in both systems. Besides, guard band is applied to mitigate the adjacent interference in all the scenarios. Especially, we reveal that M-WiMAX system is much more sensitive to adjacent interference than WCDMA system due to the lower transmission power. In this paper, we consider the worst interference environment, where interferers always transmit with the maximum power, a loose spectrum mask is adapted, and no additional channel fitters are equipped in both systems.

Investigation of the hydrogen production of the PACER fusion blanket integrated with Fe-Cl thermochemical water splitting cycle

  • Medine Ozkaya;Adem Acir;Senay Yalcin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4287-4294
    • /
    • 2023
  • In order to meet the energy demand, energy production must be done continuously. Hydrogen seems to be the best alternative for this energy production, because it is both an environmentally friendly and renewable energy source. In this study, the hydrogen fuel production of the peaceful nuclear explosives (PACER) fusion blanket as the energy source integrated with Fe-Cl thermochemical water splitting cycle have been investigated. Firstly, neutronic analyzes of the PACER fusion blanket were performed. Necessary neutronic studies were performed in the Monte Carlo calculation method. Molten salt fuel has been considered mole-fractions of heavy metal salt (ThF4, UF4 and ThF4+UF4) by 2, 6 and 12 mol. % with Flibe as the main constituent. Secondly, potential of the hydrogen fuel production as a result of the neutronic evaluations of the PACER fusion blanket integrated with Fe-Cl thermochemical cycle have been performed. In these calculations, tritium breeding (TBR), energy multiplication factor (M), thermal power ratio (1 - 𝜓), total thermal power (Phpf) and mass flow rate of hydrogen (ṁH2) have been computed. As a results, the amount of the hydrogen production (ṁH2) have been obtained in the range of 232.24x106 kg/year and 345.79 x106 kg/year for the all mole-fractions of heavy metal salts using in the blanket.