• Title/Summary/Keyword: ACI 318-05

Search Result 39, Processing Time 0.026 seconds

Comparison between ACI 318-05 and Eurocode 2 (EC2-94) in flexural concrete design

  • Hawileh, Rami A.;Malhas, Faris A.;Rahman, Adeeb
    • Structural Engineering and Mechanics
    • /
    • v.32 no.6
    • /
    • pp.705-724
    • /
    • 2009
  • The two major widely used building design code documents of reinforced concrete structures are the ACI 318-05 and Eurocode for the Design of Concrete Structures EC2. Therefore, a thorough comparative analysis of the provisions of these codes is required to confirm their validity and identify discrepancies in either code. In this context, provisions of flexural computations would be particularly attractive for detailed comparison. The provisions of safety concepts, design assumptions, cross-sectional moment capacity, ductility, minimum and maximum reinforcement ratios, and load safety factors of both the ACI 318-05 and EC2 is conducted with parametric analysis. In order to conduct the comparison successfully, the parameters and procedures of EC2 were reformatted and defined in terms of those of ACI 318-05. This paper concluded that although the adopted rationale and methodology of computing the design strength is significantly different between the two codes, the overall EC2 flexural provisions are slightly more conservative with a little of practical difference than those of ACI 318-05. In addition, for the limit of maximum reinforcement ratio, EC2 assures higher sectional ductility than ACI 318-05. Overall, EC2 provisions provide a higher safety factor than those of ACI 318-05 for low values of Live/Dead load ratios. As the ratio increases the difference between the two codes decreases and becomes almost negligible for ratios higher than 4.

Maximum Shear Reinforcement of RC Beams using High Strength Concrete (고강도 콘크리트를 사용한 RC보의 최대철근비)

  • Lee, Jung-Yoon;Hwang, Hyun-Bok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.839-842
    • /
    • 2008
  • The ACI 318-05 code requires the maximum amount of shear reinforcement in reinforced concrete (RC) beams to prevent possible sudden shear failure due to over reinforcement. The design equations of the maximum amount of shear reinforcement provided by the current four design codes, ACI 318-05, CSA-04, EC2-02, and JCI-99, differ substantially from one another. The ACI 318-05, CSA-04, and EC2-02 codes provide an expression for the maximum amount of shear reinforcement ratio as a function of the concrete compressive strength, but Japanese code does not take into account the influence of the concrete compressive strength. For high strength concrete, the maximum amount of shear reinforcement calculated by the EC2-02 and CSA-04 is much greater than that calculated by the ACI 318-05. This paper presents the effects of shear reinforcement ratio and compressive strength of concrete on the maximum shear reinforcement in reinforced concrete beams. Ten RC beams having various shear reinforcement ratio were tested. Although the test beams were designed to have much more amount of shear reinforcement than that required in the ACI 318-05 code, all beams failed due to web concrete crushing after the stirrups reached the yield strain.

  • PDF

Torsional Strength and Failure Modes of Reinforced Concrete Beams Subjected to Pure Torsion (순수비틀림을 받는 철근콘크리트 보의 비틀림 강도와 파괴모드)

  • Lee, Jung-Yoon;Kim, Sang-Woo;Kim, Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.503-511
    • /
    • 2008
  • This paper presents the results of an analytical and experimental study on the performance of reinforced concrete beams subjected to pure torsion. The main parameters of the experimental tests were amount of torsional reinforcement and the ratio of the transverse torsional reinforcement to the longitudinal torsional reinforcement. The test results indicated that the maximum amount of torsional reinforcement required in ACI 318-05 code underestimated almost twice as much as the observed maximum amount of torsional reinforcement. Comparisons between the tested and calculated torsional behaviors of the 102 beams showed that the torsional failure modes of ACI 318-05 code disagreed with the observed failure modes. In addition, the torsion provisions in ACI 318-05 code overestimate the torsional strength of the RC beams in which relatively large amount of torsional reinforcement were reinforced, while underestimate for the beams with small amount of torsional reinforcement. This discrepancy between the theoretical ultimate torsional strength as given by the ACI 318-05 code and the experimental one can be due to neglecting the tension stiffening effect and the contribution of the torsional strength by concrete.

Effect of Aggregate Size on the Shear Capacity of Lightweight Concrete Continuous Beams (경량콘크리트 연속보의 전단내력에 대한 골재크기의 영향)

  • Yang, Keun-Hyeok;Mun, Ju-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.669-677
    • /
    • 2009
  • Twenty-four beam specimens were tested to examine the effect of the maximum aggregate size on the shear behavior of lightweight concrete continuous beams. The maximum aggregate size varied from 4 mm to 19 mm and shear span-to-depth ratio was 2.5 and 0.6 in each all-lightweight, sand-lightweight and normal weight concrete groups. The ratio of the normalized shear capacity of lightweight concrete beams to that of the company normal weight concrete beams was also compared with the modification factor specified in ACI 318-05 for lightweight concrete. The microphotograph showed that some unsplitted aggregates were observed in the failure planes of lightweight concrete beams, which contributed to the enhancement of the shear capacity of lightweight concrete beams. As a result, the normalized shear capacity of lightweight concrete continuous beams increased with the increase of the maximum aggregate size, though the increasing rate was lower than that of normal weight concrete continuous beams. The modification factor specified in ACI 318-05 was generally unconservative in the continuous lightweight concrete beams, showing an increase of the unconservatism with the increase of the maximum aggregate size. In addition, the conservatism of the shear provisions of ACI 318-05 was lower in lightweight concrete beams than in normal weight concrete beams.

An Experimental Study on Seismic Performance of Reinforced Concrete Bridge Columns under Lateral Cyclic Load (반복 횡하중을 받는 철근콘크리트 교각의 내진성능에 관한 실험적 연구)

  • 이진옥;윤현도;황선경;류효진;나홍성;이경준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.161-164
    • /
    • 2003
  • This experimental investigation was conducted to examine the seismic performance of reinforced concrete bridge columns. The columns were subjected to a constant axial load and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement ($P_s$ =0.96, 1.44 per cent) and axial load ratio (0.05, 0.1, 0.2 P/$P_o$). Test results show that bridge columns with 50 per cent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour. For bridge columns with axial load ratio(P/$P_o$) less than 0.2, the ratio of $M_{max}$ over $M_{aci}$, nominal moment capacity predicted by ACI 318-02 provisions, is consistently greater than 1 with approximately a 20 percent margin of safty.

  • PDF

Proposals of Indeterminate Strut-Tie Model and Load Distribution Ratio for Design of RC Corbels (철근콘크리트 코벨의 설계를 위한 부정정 스트럿-타이 모델 및 하중분배율의 제안)

  • Chae, Hyun-Soo;Yun, Young-Mook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.197-200
    • /
    • 2008
  • The RC corbels with the ratio of shear span-to-effective depth less than 1 are commonly used to transfer loads from beams to columns. The ultimate strengths and structural behaviors of RC corbels are controlled by the shear span-to-effective depth ratio, strength of concrete, shape and quantity of the reinforcement, and geometry of corbels. In this study, a simple indeterminate strut-tie model reflecting all characteristics of the ultimate strengths and complicated structural behaviors is presented for the design of RC corbels. In addition, a load distribution ratio, defined as a magnitude of load transferred by a horizontal truss mechanism, is proposed to help structural designers perform the design of RC corbels by using the strut-tie model approaches of current design codes. The ultimate strengths of 30 RC corbels tested to failure are evaluated by using the ACI 318-05's strut-tie model code for the validity check of the proposed indeterminate strut-tie model and load distribution ratio.

  • PDF

Shear Behavior of Reinforced Concrete Beams Strengthened with Unbonded-Type Wire Rope Units (비 부착형 와이어로프로 보강된 철근콘크리트 보의 전단 거동)

  • Kim, Sun-Young;Byun, Hang-Yong;Sim, Jae-Il;Chung, Heon-Soo;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.83-90
    • /
    • 2007
  • The present study reports a simple unbonded-type shear strengthening technique for reinforced concrete beams using wire rope units. Fifteen beams failed in shear were repaired and strengthened with wire rope units, and then retested to failure. Influence of the prestressing force, orientation and spacing of wire rope units on the shear behavior of strengthened beams having shear span-to-depth ratios of 1.5, 2.5, or 3.25 were investigated. Test results showed that beams strengthened with wire rope units exhibited a higher shear strength and a larger post-failure deformation than the corresponding original beams. Inclined wire rope units was more effective for shear strength enhancement than vertical wire rope units. The increase of the prestressing force in wire rope units causes the decrease of the principal tensile stress in concrete, as a result, the diagonal tensile cracking strength of strengthened beams was higher than that of the corresponding original beams. Shear capacity of strengthened beams is compared with predictions obtained from ACI 318-05 and EC 2. Shear capacity of strengthened beams having shear span-to-depth ratio below 2.5 is reasonably predicted using ACI 318-05 formula. On the other hand, EC 2 overestimates the shear transfer capacity of wire rope units for beams having shear span-to-depth ratio above 2.5.

Characteristic Behavior of High-Strength Reinforced Concrete Bridge Column under Simulated Seismic Loading (고강도 철근콘크리트 교각의 내진거동특성)

  • Ra Hong-Seong;Lee Kyoung-Joon;Ryu Hyo-Jin;Hwang Sun-Kyoung;Lee Chin-Ok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.22-27
    • /
    • 2004
  • This experimental investigation was conducted to examine the seismic performance of reinforced concrete bridge columns. The columns were subjected to a constant axial load and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement (ps = 0.96, 1.44 per cent) and axial load ratio (0.05, 0.1, 0.2 P/Po) and strength $(350kgf/cm^2,\;600kgf/cm^2)$. Test results show that bridge columns with 50 per cent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour. For bridge columns with axial load ratio(P/Po) less than 0.2, the ratio of Mmax over Mad, nominal moment capacity predicted by ACI 318-02 provisions, is consistently greater than 1 with approximately a 20 percent margin of safty.

  • PDF

Indeterminate Strut-Tie Model for Rational Design of Continuous RC Deep Beams (연속지지 RC 깊은 보의 합리적인 설계를 위한부정정 스트럿-타이 모델의 제안)

  • Chae, Hyun-Soo;Kim, Byung-Hun;Yun, Young-Mook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.265-268
    • /
    • 2006
  • Recently, many design standards recommend the use of a strut-tie model approach for design of structural concrete with D-region(s). However, since the design standards of the conventional strut-tie model approaches are suggested on the assumption of using a determinate strut-tie model, it is difficult to apply an indeterminate strut-tie model in the design of continuous deep beams. In this study, an indeterminate strut-tie model for continuous deep beams is proposed to resolve the problem, and the ultimate strengths of 35 continuous deep beams tested to failure are evaluated for the validity check of the proposed indeterminate strut-tie model. The analytical results by the proposed model are compared with those by the conventional approaches of ACI 318-99 and ACI 318-05.

  • PDF

Strength of Interior Post-Tensioned Flat Plate Slab-Column Connection based on Failure Mechanism (파괴 메커니즘을 고려한 내부 포스트텐션 플랫 플레이트 슬래브-기둥 접합부의 강도식 평가)

  • Kim, Min-Nam;Ha, Sang-Su;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.126-129
    • /
    • 2006
  • A bending moment $M_u$ transferred at slab-column connection is resisted at the slab critical section by flexure and shear. The ACI 318-05 Building Code(1) gives an empirical equation for the fraction ${\gamma}_{\upsilon}$ of the moment $M_u$ to be transferred by shear at the slab critical section at d/2 from the column face and also the effective wide(c+3h). The equation is based on tests of interior slab-column connections without shear reinforcement. In order to investigate the data eight test specimens were examined. The test shows that increased slab load substantially reduces both the unbalanced moment capacity and the lateral drift capacity of the connection. Especially, the specimens with the bottom reinforcement existence and nonexistence, appears remarkable differences. Studies also show that the code equation for ${\gamma}_{\upsilon}$ does not apply to all cases. The purpose of this study is to compare the test results with present ACI 318-05 Building Code provisions for design of slab-column connections and with the analysis of the experimental data for a new limitation of strength equation without shear reinforcement and bottom reinforcement.

  • PDF