• Title/Summary/Keyword: AC-DC power conversion

Search Result 234, Processing Time 0.024 seconds

Implementation and Control of AC-DC-AC Power Converter in a Grid-Connected Variable Speed Wind Turbine System with Synchronous Generator (동기기를 사용한 계통연계형 가변속 풍력발전 시스템의 AC-DC-AC 컨버터 구현 및 제어)

  • Song Seung-Ho;Kim Sung-Ju;Hahm Nyon-Kun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.609-615
    • /
    • 2005
  • A 30kW electrical power conversion system is developed for a variable speed wind turbine. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and the frequency of the generator output vary according to the wind speed, a 6-bridge diode rectifier and a PWM boost chopper is utilized as an ac-dc converter maintaining the constant dc-link voltage with only single switch control. An input current control algorithm for maximum power generation during the variable speed operation is proposed without any usage of speed sensor. Grid connection type PWM inverter converts dc input power to ac output currents into the grid. The active power to the grid is controlled by q-axis current and the reactive power is controlled by d-axis current with appropriate decoupling. The phase angle of utility voltage is detected using software PLL(Phased Locked Loop) in d-q synchronous reference frame. Experimental results from the test of 30kW prototype wind turbine system show that the generator power can be controlled effectively during the variable speed operation without any speed sensor.

A Study on a Performance Analysis of Direct-Conversion Receiver In Additive White Gaussian Noise Channel (AWGN 채널환경에서 Direct-Conversion 수신기의 성능분석에 관한 연구)

  • 조형래;김철성;박성진
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.668-675
    • /
    • 2001
  • Recently, the performance of the commercial PCS(Personal Communication Service) system has been improved to the uppermost limit and ultimately the next generation mobile communication is to be realized by IMT-2000 (International Mobile Communication-2000) to provide multimedia services. Therefore, the new type receiving system is researched actively and one of the most important part in a receiver is direct conversion method. The direct conversion method is suitable for low power consumption, small size, MMIC, and low price, which is to be adopted to the next generation mobile communication systems. In this case, however, several problems occur due to DC-offset. The DC-offset suppresses amplification of the required signal because of the leakage signal of frequency synthesizer in the system. In this thesis, the removing method of DC-offset was considered. There are four removing techniques of DC-offset, which are AC-coupling, large capacitor, DC-feedback loop, and DC-free coding. Among these, the AC-coupling method is the most simplest method and the DC-feedback loop method has the best performance. Then, the performance of the AC-coupling method and DC-feedback loop method are evaluated by HP's ADS simulation tool. As a result, the AC-coupling method cannot be used to the digital communication systems due to data loss. On the other hand, it was confirmed that the DC-feedback loop method is suitable for the direct conversion receiver.

  • PDF

Utility AC Frequency to High Frequency ACPower Conversion Circuit with Soft Switching PWM Strategy

  • Sugimura Hisayuki;Ahmed Nabil A.;Ahmed Tarek;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.181-188
    • /
    • 2005
  • In this paper, a DC smoothing filterless soft switching pulse modulated high frequency AC power conversion circuit connected to utility. frequency AC power source is proposed for consumer induction heating hot water producer, steamer and super heated steamer. The operating principle of DC link filterless utility frequency AC-high frequency AC (HF AC) power conversion circuit defined as high frequency cycloinverter is described, which can operate under a principle of ZVS/AVT and power regulation based on alternate asymmetrical PWM in synchronization with the utility frequency single phase AC positive or negative half wave voltage. The dual mode modulation control scheme based on high frequency PWM and commercial frequency AC voltage PDM for the proposed high frequency cycloinverter are discussed to enlarge its soft switching commutation operating range for wide HF AC power regulation. This high frequency cycloinverter is developed for high frequency IH Dual Packs Heater (DPH) type boiler used in consumer and industrial fluid pipeline systems. Based on the experiment and simulation results, this high frequency cycloinverter is proved to be suitable for the consumer use IH-DPH boiler and hot water producers. The cycloinverter power regulation and power conversion efficiency characteristics are evaluated and discussed.

Implementation of Voltage Sag/Swell Compensator using Direct Power Conversion (직접전력변환 방식을 이용한 전압 강하/상승 보상기의 구현)

  • Lee, Sang-Hoey;Cha, Han-Ju;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1544-1550
    • /
    • 2009
  • In this paper, a new single phase voltage sag/swell compensator using direct power conversion is proposed. A new compensator consists of input/output filter, series transformer and direct ac-ac converter, which is a single-phase back-to-back PWM converter without dc-link capacitors. Advantages of the proposed compensator include: simple power circuit by eliminating dc link electrolytic capacitors and thereby, improved reliability and increased life time of the entire compensator; simple PWM strategy or compensating voltage sag/swell at the same time and reduced switching losses in the ac-ac converter. Further, the proposed scheme is able to adopt simple switch commutation method without requiring complex four-step commutation method that is commonly employed in the direct power conversion. Simulation and experimental results are shown to demonstrate the advantages of the new compensator and PWM strategy. A 220V, 3kVA single-phase compensator based on the digital signal processor controller is built and tested.

Deadbeat Direct Active and Reactive Power Control of Three-phase PWM AC/DC Converters

  • Gandomkar, Ali;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1634-1641
    • /
    • 2018
  • This study focuses on a high-performance direct active and reactive power controller design that is successfully applicable to three-phase pulse width modulation (PWM) AC/DC converters used in renewable distributed energy generation systems. The proposed controller can overcome the sluggish transient dynamic response of conventional controllers to rapid power command changes. Desired active and reactive powers can be thoroughly obtained at the end of each PWM period through a deadbeat solution. The proposed controller achieves an exact nonlinear cross-coupling decoupling of system power without using a predefined switching table or bang/bang hysteresis control. A graphical and analytical analysis that naturally leads to a control voltage vector selection is provided to confirm the finding. The proposed control strategy is evaluated on a 3 kW PWM AC/DC converter in the simulation and experiment.

Active-Clamp AC-DC Converter with Direct Power Conversion (직접전력변환 방식을 이용한 능동 클램프 AC-DC 컨버터)

  • Cho, Yong-Won;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.230-237
    • /
    • 2012
  • This paper proposes an active-clamp ac-dc converter with direct power conversion that has a simple structure and achieves high efficiency. The proposed converter is derived by integrating the step-down ac chopper and the output-voltage doubler. The proposed converter provides direct ac-dc conversion and dc output voltage without using any full-bridge diode rectifier. The step-down ac chopper using an active-clamp mechanism serves to clamp the voltage spike across the main switches and provides zero-voltage turn-on switching. The resonant-current path formed by the leakage inductance of the transformer and the resonant capacitor of the output-voltage doubler achieves the zero-current turn-off switching of the output diodes. The operation principle of the converter is analyzed and verified. A 500W prototype is implemented to show the performance of the proposed converter. The prototype provides maximum efficiency of 95.1% at the full load.

A Comparative Study of Simple Ac-Dc PWM Full-Bridge Current-Fed and Voltage-Fed Converters

  • Moschopoulos Gerry;Shah Jayesh
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.246-255
    • /
    • 2004
  • Ac-dc PWM single-stage converters that integrate the PFC and dc-dc conversion functions in a single switching converter have been proposed to try to minimize the cost and complexity associated with implementing two separate and independent switch-mode converters. In this paper, two simple ac-dc single-stage PWM full-bridge converters are considered - one current-fed, the other voltage-fed. The operation of both converters is explained and their properties are noted. Experimental results obtained from simple lab prototypes of both converters are presented, then compared and discussed.

Topology Generation and Analysis of the No Dead Time AC/DC Converter

  • Zheng, Xinxin;Xiao, Lan;Tian, Yangtian
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.249-256
    • /
    • 2014
  • A novel topology generation method for the no dead-time three-phase AC/DC converter is proposed in this study. With this method, a series of no dead time topologies are generated and their operation principles are analyzed. The classic three-phase bridge AC/DC converter can realize a bidirectional operation. However, dead-time should be inserted in the driving signals to avoid the shoot-through problem, which would cause additional harmonics. Compared with the bridge topology, the proposed topologies lack the shoot-through problem. Thus, dead time can be avoided. All of the no dead time three-phase AC/DC converters can realize bidirectional operation. The operating principles of the converters are analyzed in detail, and the corresponding control strategies are discussed. Comparisons of waveform distortion and efficiency among the converters are provided. Finally, 9 KW DSP-based principle prototypes are established and tested. Simulation and experimental results verify the theoretical analysis.

PWM DC-AC Converter Regulation using a Multi-Loop Single Input Fuzzy PI Controller

  • Ayob, Shahrin Md.;Azli, Naziha Ahmad;Salam, Zainal
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.124-131
    • /
    • 2009
  • This paper presents a PWM dc-ac converter regulation using a Single Input Fuzzy PI Controller (SIFPIC). The SIFPIC is derived from the signed distanced method, which is a simplification of a conventional fuzzy controller. The simplification results in a one-dimensional rule table, that allows its control surface to be approximated by a piecewise linear relationship. The controller multi-loop structure is comprised of an outer voltage and an inner current feedback loop. To verify the performance of the SIFPIC, a low power PWM dc-ac converter prototype is constructed and the proposed control algorithm is implemented. The experimental results show that the SIFPIC performance is comparable to a conventional Fuzzy PI controller, but with a much reduced computation time.

High-Efficiency DC-DC Converter with Improved Dynamic Response Characteristics for Modular Photovoltaic Power Conversion (모듈형 태양광 발전을 위한 개선된 동적응답 특성을 지닌 고효율 DC-DC 컨버터)

  • Choi, Jae-Yeon;Choi, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.54-62
    • /
    • 2013
  • This paper proposes a high-efficiency DC-DC converter with improved dynamic response characteristics for modular photovoltaic power conversion. High power efficiency is achieved by reducing switching power losses of the DC-DC converter. The voltage stress of power switches is reduced at primary side. Zero-current switching of output diodes is achieved at secondary side. A modified proportional and integral controller is suggested to improve the dynamic responses of the DC-DC converter. The performance of the proposed converter is verified based on a 200 [W] modular power conversion system including the grid-tied DC-AC inverter. The proposed DC-DC converter achieves the efficiency of 97.9 % at 60 [V] input voltage for a 200 [W] output power. The overall system including DC-DC converter and DC-AC inverter achieves the efficiency of 93.0 % when 200 [W] power is supplied into the grid.