• Title/Summary/Keyword: AC transport losses

Search Result 35, Processing Time 0.021 seconds

Effects of Longitudinal Field in a Multiply-Twisted Superconducting Cable (초전도다중케이블에서의 축방향자계)

  • Cha, Guee-Soo;Sim, Jung-Wook;Park, Jong-Hyeon;Na, Wan-Soo;Lee, Ji-Kwang;Kim, Dong-Hun;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.101-103
    • /
    • 1996
  • Multiply-twist cable is used for a large capacity superconducting cable because it is helpful to reduce AC losses and to increase transport current. In a multiply-twisted cable, the axis of a strand does not coincide with that of cable. Therefore, the longitudinal field is generated by the transport current. The longitudinal field changes the current distribution in the strand and generates additional AC loss. This paper calculates the longitudinal field that is applied to a strand in the multiply-twisted cable. Current distribution of a strand in the cable is also presented. 2nd level superconducting cable is chosen as an analysis model, whose current capacity is 2000A. Calculation result shows the longitudinal field cannot be neglected in low field machines such as superconducting transformer.

  • PDF

AC Boss of multi-layer HTS Power transmission cable considering the current distribution by cable length variation (케이블 길이에 따른 층별 전류분류를 고려한 다층 고온초전도 송전케이블의 교류손실계산)

  • Lee, J.K.;Lee, S.W.;Cha, G.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.810-812
    • /
    • 2000
  • Superconducting transmission cable is one of interesting part in power application using high temperature superconducting wire as transformer. One important parameter in HTS cable design is transport current distribution because it is related with current transmission capacity and loss. In this paper, we calculate inductance and current distribution for 4-layer cable using the electric circuit model and compare calculation results of transport current losses by monoblock model and Norris equation

  • PDF

AC transport current loss analysis for anti-parallel current flow in face-to-face stacks of superconducting tapes

  • Yoo, Jaeun;Han, Young-Hee;Kim, Hey-Rim;Park, Byung-Jun;Yang, Seong-Eun;Kim, Heesun;Yu, Seung-Duck;Park, Kijun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.42-46
    • /
    • 2014
  • In this study we investigated ac transport current losses in the face to face stack for the anti-parallel current flow, and compared the electromagnetic properties with those of the single SC tape as well as those of the same stack for the parallel current path. The gap between the SC tapes in the stack varied in order to verify the electromagnetic influence of the neighbors when current flows in opposite direction, and the model was implemented in the finite element method program by the commercial software, COMSOL Multiphysics 4.2a. Conclusively speaking, the loss was remarkably decreased for the anti-parallel current case, which is attributed the magnetic flux compensation between the SC layers due to the opposite direction of the current flows. As the gap between SC tapes was increased, the loss mitigation became less effective. Besides, the current density distribution is very flat cross the sample width for the narrower gap case, which is believed to be benefit for the power electric system. These results are all in good agreement with those predicted theoretically for an infinite bifilar stack.

AC Loss Characteristics of a Single-layered Cylindrical High Temperature Superconductor (단층원통형 고온초전도도체의 교류손실 특성)

  • Ma, Yong-Hu;Li, Zhu-Yong;Ryu, Kyung-Woo;Sohn, Song-Ho;Hwang, Si-Dol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.626-630
    • /
    • 2007
  • The AC loss is an important issue in the design of the high temperature superconductor (HTS) power cables and fault current limiters. In these applications, a cylindrical HTS conductor is often used. In commercialization of these apparatuses, AC loss is a critical factor but not elucidated completely because of complexities in its measurement, e.g. non-uniform current distribution and phase difference between currents flowing in an individual HTS tape. We have prepared two cylindrical conductors composed of a Bi-2223 tape with different critical current density. In this paper, the AC loss characteristics of the conductors have been experimentally investigated and numerically analyzed. The result show that the measured losses for two conductors are not dependent on both arrangements and contact positions of a voltage lead. This implies that most of loss flux is only in the conductors. The loss for the Bi-2223 conductor with low critical current density is in good agreement with the calculated loss from Monoblock model, whereas the loss measured for the Bi-2223 conductor with high critical current density doesn't coincide with the loss calculated from the Monoblock model. The measured loss is also different from numerically calculated one based on the polygon model especially in low transport current.

Measurement of electrical resistance at the Nb_{3}$Sn CICC joint fabricated by sub-cable to sub-cable joining (Nb_{3}$Sn 초전도 CICC의 sub-cable to sub-cable 접합 및 접합저항 측정)

  • 이호진;홍계원;김기백;권선칠;김기만
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.89-92
    • /
    • 1999
  • A small scale joint sample of Nb3Sn CICC was fabricated by sub-cable to sub-cable joining. This joint was produced by parallel insertion of one end of each sub-cable into the sub-cable space of the other side of cable, which can decrease the equivalent electrical resistance at the joint is expected to have average properties, dc resistance and ac losses, in view of the shapes of ITER type joint and strand to strand joint. The 3.8nOhm of dc resistance was measured in the range of 10-200A transport current. The normalized resistivity of the joint was about 6.7 $\mu}$Ohm-$^mm{2}$. Considering the normalized resistivity, the full scale joint prepared by sub-cable to sub-cable joining may have similar joint dc resistance with other conventional full scale joints with a shorter joining length.

  • PDF