• Title/Summary/Keyword: AC current

Search Result 2,316, Processing Time 0.027 seconds

Electrical and Mechanical Properties in High Tc Superconducting Wires for HTSC Cable (고온 초전도 케이블용 선재의 특성해석에 관한 연구)

  • Kim, Sang-Hyun;Jang, Hyun-Man;Jeong, Jong-Man;Kim, Young-Seok;Baek, Seung-Myong
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1050-1053
    • /
    • 1998
  • To be applied to electrical equipment HTSC tapes have to endure external stress and so on. The critical current density has been shown depending on the mechanical properties. strain and bending stress. AC loss reduction is primary concern in the development of such high-efficiency equipment. AC losses in Bi-2223 silver-sheathed tapes, both single and multi-filamentary, were investigated by means of AC magnetization techniques. The results were compared with the hysteresis loss equation based on Bean model and the eddy current loss equation. The AC loss of the mono-filamentary tape was the hysteresis. On the contrary, the AC loss of the multi-filamentary tape was substantially dominated by the eddy current loss in the Ag matrix.

  • PDF

AC loss of HTS magnet for AMR refrigerator using magnetic field formulation and edge element in cylindrical coordinates

  • Kim, Seokho;Park, Minwon;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • AMR (Active Magnetic Regenerative) refrigerators require the large variation of the magnetic field and a HTS magnet can be used. The amount of AC loss is very important considering the overall efficiency of the AMR refrigerator. However, it is very hard to estimate the precise loss of the HTS magnet because the magnetic field distribution around the conductor itself depends on the coil configuration and the neighboring HTS wires interact each other through the distorted magnetic field by the screening current Therefore, the AC loss of HTS magnet should be calculated using the whole configuration of the HTS magnet with superconducting characteristic. This paper describes the AC loss of the HTS magnet by an appropriate FEM approach, which uses the non-linear characteristic of HTS conductor. The analysis model is based on the 2-D FEM model, called as 'magnetic field formulation and edge-element model', for whole coil configuration in cylindrical coordinates. The effects of transport current and stacked conductors on the AC loss are investigated considering the field-dependent critical current. The PDE model of 'Comsol multiphysics' is used for the FEM analysis with properly implemented equations for axisymmetric model.

Investigation on Effective Operational Temperature of HTS Cable System considering Critical Current and AC loss

  • Kim, Tae-Min;Yim, Seong-Woo;Sohn, Song-Ho;Lim, Ji-Hyun;Han, Sang-Chul;Ryu, Kyung-Woo;Yang, Hyung-Suk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.307-310
    • /
    • 2016
  • The operational cost for maintaining the superconductivity of high-temperature superconducting (HTS) cables needs to be reduced for feasible operation. It depends on factors such as AC loss and heat transfer from the outside. Effective operation requires design optimization and suitable operational conditions. Generally, it is known that critical currents increase and AC losses decrease as the operational temperature of liquid nitrogen ($LN_2$) is lowered. However, the cryo-cooler consumes more power to lower the temperature. To determine the effective operational temperature of the HTS cable while considering the critical current and AC loss, critical currents of the HTS cable conductor were measured under various temperature conditions using sub-cooled $LN_2$ by Stirling cryo-cooler. Next, AC losses were measured under the same conditions and their variations were analyzed. We used the results to select suitable operating conditions while considering the cryo-cooler's power consumption. We then recommended the effective operating temperature for the HTS cable system installed in an actual power grid in KEPCO's 154/22.9 kV transformer substation.

Electrical and Mechanical Properties in High Tc Superconducting Wires for HTSC Cable (고온 초전도 케이블용 선재의 특성해석에 관한 연구)

  • Kim, Sang-Hyun;Jang, Hyun-Man;Jeong, Jong-Man;Kim, Young-Seok;Baek, Seung-Myong
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.702-705
    • /
    • 1998
  • To be applied to electrical equipment HTSC tapes have to endure external stress and so on. The critical current density has been shown depending on the mechanical properties, strain and bending stress. AC loss reduction is primary concern in the development of such high-efficiency equipment. AC losses in Bi-2223 silver-sheathed tapes, both single and multi-filamentary, were investigated by means of AC magnetization techniques. The results were compared with the hysteresis loss equation based on Bean model and the eddy current loss equation. The AC loss of the mono-filamentary tape was the hysteresis. On the contrary, the AC loss of the multi-filamentary tape was substantially dominated by the eddy current loss in the Ag matrix.

  • PDF

Low Frequency Current Reduction using a Quasi-Notch Filter operated in Two-Stage DC-DC-AC Grid-Connected Systems (Quasi-Notch Filter를 이용한 DC-DC-AC 계통연계형 단상 인버터에서의 저주파 전류 감소 기법)

  • Jung, Hong-Ju;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.276-282
    • /
    • 2014
  • In a single-phase grid-connected power system consisting of a dc-dc converter and a dc-ac converter, the current drawn from renewable energy sources has a tendency to be pulsated and contains double-fundamental frequency ripple components, which results in several drawback such as a power harvesting loss and a shortening of the energy source's life. This paper presents a new double-fundamental current reduction-scheme with a fast dc-link voltage loop for two-stage dc-dc-ac grid connected systems. In the frequency domain, an adequate control design is performed based on the small-signal transfer function of a two-stage dc-dc-ac converter. To verify the effectiveness of proposed control algorithm, a 1 kW hardware prototype has been built and experimental results are presented.

Electrical and Mechanical Properties in High Tc Superconducting Wires for HTSC Cable (고온 초전도 케이블용 선재의 특성해석에 관한 연구)

  • Kim, Seng-Hyun;Jang, Hyun-Man;Jeong, Jong-Man;Kim, Young-Seok;Baek, Seung-Myong
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.382-385
    • /
    • 1998
  • To be applied to electrical equipment HTSC tapes have to endure external stress and so on. The critical current density has been shown depending on the mechanical properties, strain and bending stress. AC loss reduction is primary concern in the development of such high-efficiency equipment. AC losses in Bi-2223 silver-sheathed tapes, both single and multi-filamentary, were investigated by means of AC magnetization techniques. The results were compared with the hysteresis loss equation based on Bean model and the eddy current loss equation. The AC loss of the mono-filamentary tape was the hysteresis. On the contrary, the AC loss of the multi-filamentary tape was substantially dominated by the eddy current loss in the Ag matrix.

  • PDF

The effect of non-uniform current distribution on transport current loss in stacked high-Tc superconductor tapes

  • Choi, Se-Yong;Nah, Wan-Soo;Joo, Jin-Ho;Ryu, Kyung-Woo;Lee, Byoung-Seob;Yoon, Jang-Hee;Ok, Jung-Woo;Park, Jin-Yong;Won, Mi-Sook
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.16-19
    • /
    • 2012
  • The influence of current distribution on the transport current loss in vertically stacked high-$T_c$ superconductor (HTS) tapes was evaluated. AC loss was analyzed as a function of current distribution by introducing a current distribution parameter through a numerical method (finite element analysis). AC loss under non-uniform current distribution is always higher than that for a uniformly distributed transport current in a conductor. Although the effect of non-uniformity is relatively insignificant in low transport current, AC loss increases substantially in high transport current regions as non-uniformity is enlarged. The results verify that non-uniform current distribution causes extra loss by examining the cross-sectional view of current densities in stacked conductor.

Analysis of Current-Fed Active AC Power Filters (전류형 능동 교류 전력 필터의 해석)

  • Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.441-450
    • /
    • 1989
  • A control technique for current-fed filters is proposed which not only eliminates the harmonic current, but also controls the reactive power at the ac sides of PWM inverter-induction motor drive system. Injecting the proposed PWM current enables the harmonic components of orders not greater than the number of pulses per half-cycle to be removed completely. Also it enables the input fundamental power factor to become unity and hence total input power factor can be improved greatly. Digital simulation is performed to investigate the theoretical output characteristics of the current-fed filters by the proposed control technique.

  • PDF

Design of a High-Precision Constant Current AC-DC Converter with Inductance Compensation

  • Chang, Changyuan;Xu, Yang;Bian, Bin;Chen, Yao;Hu, Junjie
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.840-848
    • /
    • 2016
  • A primary-side regulation AC-DC converter operating in the PFM (Pulse Frequency Modulation) mode with a high precision output current is designed, which applies a novel inductance compensation technique to improve the precision of the output current, which reduces the bad impact of the large tolerance of the transformer primary side inductance in the same batch. In this paper, the output current is regulated by the OSC charging current, which is controlled by a CC (constant current) controller. Meanwhile, for different primary inductors, the inductance compensation module adjusts the OSC charging current finely to improve the accuracy of the output current. The operation principle and design of the CC controller and the inductance compensation module are analyzed and illustrated herein. The control chip is implemented based on a TSMC 0.35μm 5V/40V BCD process, and a 12V/1.1A prototype has been built to verify the proposed control method. The deviation of the output current is within ±3% and the variation of the output current is less than 1% when the inductances of the primary windings vary by 10%.

Input Power Estimation Method of a Three-phase Inverter for High Efficiency Operation of an AC Motor (교류 전동기의 고효율 운전을 위한 3상 인버터의 입력전력 추정 기법)

  • Kim, Do-Hyun;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.445-451
    • /
    • 2019
  • An input power estimation method of a three-phase inverter for the high-efficiency operation of AC motors is proposed. Measuring devices, such as DC link voltage and input current sensors, are required to obtain the input power of the inverter. In the proposed method, the input power of the inverter can be estimated without the input current sensor by using the phase current information of the AC motor and the switching pattern of the inverter. The proposed method is more robust to parameter error than conventional method. The validity of the input power estimation method is verified through experiments conducted on a 1 kW permanent-magnet synchronous motor drive system.