• Title/Summary/Keyword: AC and DC insulation breakdown voltage

Search Result 19, Processing Time 0.02 seconds

Accelerated Insulation Life Estimation for PAI/Nano Silica Enamelled Wire under Inverter Surge and Temperature Stress (인버터 서지와 온도스트레스 하에서 PAI/Nano Silica 에나멜와이어의 가속절연수명 평가)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1712-1720
    • /
    • 2016
  • AC and DC insulation breakdown voltage was studied for magnet wire coated with double layers of high flexural PAI layer and high anti-corona PAI/nanosilica (15 wt%) layer. The specimens were prepared at various drying temperatures (T/D): $22^{\circ}C$, $240^{\circ}C$, and $260^{\circ}C$, respectively. The increase effects of nanosilica on AC and DC insulation breakdown voltage were not so significant compared to that of magnet wire coil coated with original PAI. And the AC and DC insulation breakdown voltage was improved by decreasing diameter of winding coil. As T/D temperature increased, AC and DC insulation breakdown voltage decreased.

Insulation Breakdown Properties of AC and DC according to Curvature Variation of PAI Organic/Inorganic Hybrid Coils (PAI 유/무기 하이브리드코일의 곡률변화에 따른 AC 및 DC 절연파괴 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1721-1726
    • /
    • 2016
  • 4-types of coils were prepared by coating with polyamideimide (PAI) organic/inorganic hybrid. One type was made with original PAI vanish and the other 3-types were made of double layers, that was to say, high flexural PAI layer and high anti-corona PAI/nanosilica (15 wt%) layer. Drying temperature (T/D) were $220^{\circ}C$, $240^{\circ}C$, and $260^{\circ}C$, respectively and rectangular type coil for high-voltage rotating machine was used. DC and AC electrical breakdown tests were carried out in order to study the insulation properties according to T/D temperature and coil curvature (5, 15, and $25mm{\Phi}$). As the curvature increased, electrical breakdown voltage decreased and as T/D temperature decreased, electrical breakdown voltage increased.

Copper Particle Effect on the Breakdown Strength of Insulating Oil at Combined AC and DC Voltage

  • Wang, You-Yuan;Li, Yuan-Long;Wei, Chao;Zhang, Jing;Li, Xi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.865-873
    • /
    • 2017
  • Converter transformer is the key equipment of high voltage direct current transmission system. The solid suspending particles originating from the process of installation and operation of converter transformer have significant influence on the insulation performance of transformer oil, especially in presence of DC component in applied voltage. Under high electric field, the particles easily lead to partial discharge and breakdown of insulating oil. This paper investigated copper particle effect on the breakdown voltage of transformer oil at combined AC and DC voltage. A simulation model with single copper particle was established to interpret the particle effect on the breakdown strength of insulating oil. The experimental and simulation results showed that the particles distort the electric field. The breakdown voltage of insulating oil contaminated with copper particle decreases with the increase of particle number, and the breakdown voltage and the logarithm of particle number approximately satisfy the linear relationship. With the increase of the DC component in applied voltage, the breakdown voltage of contaminated insulating oil decreases. The simulation results show that the particle collides with the electrode more frequently with more DC component contained in the applied voltage, which will trigger more discharge and decrease the breakdown voltage of insulating oil.

A Study on the DC and Impulse Breakdown Performances of PPLP Insulation in Liquid Nitrogen for DC Applications

  • Kim, W.J.;Kim, H.J.;Cho, J.W.;HwangBo, S.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.32-35
    • /
    • 2012
  • A high-$T_c$ superconducting (HTS) DC application has advantages such as the ultimately lower loss, more compact dimensions, and large capacity compared to AC application. In order to optimize the insulation design of a HTS DC machines, it is important to understand the high voltage insulation and materials at cryogenic temperature. Polypropylene laminated paper (PPLP) has been widely used as an insulating material for HTS AC machines. However, the fundamental data under DC voltage have not been revealed satisfactorily until now. In this paper, we will discuss mainly on the breakdown and dielectric characteristics of PPLP in liquid nitrogen ($LN_2$). The polarity effects of DC and impulse voltage were studied by using the semi-rod to cylindrical electrode. The volume resistivity of PPLP in $LN_2$ was studied. Also, the space charge distribution at room temperature was studied. However, it is necessary to study this topic at cryogenic temperature in the near future.

Comparative Study of DC Breakdown and Space Charge Characteristics of Insulation Paper Impregnated with Natural Ester and Mineral Oil

  • Hao, Jian;Zou, Run-Hao;Liao, Rui-Jin;Yang, Li-Jun;Liao, Qiang;Zhu, Meng-Zhao
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1682-1691
    • /
    • 2018
  • Natural ester is a suitable substitute for mineral oil and has been widely used in AC transformer in many countries. In order to further application of natural ester in direct current (DC) equipment, it is needed to investigate its long term insulation property under DC condition. In this paper, a thermal ageing experiment was conducted for both mineral oil-paper and natural ester-paper insulation. The DC breakdown and space charge characteristics of insulation paper impregnated with natural ester and mineral oil was compared. Results show that the resistivity of the paper immersed in natural ester and mineral oil both increase as the ageing goes on. While insulation paper impregnated with natural ester has higher resistivity and DC breakdown voltage than the paper impregnated with mineral oil. The DC breakdown voltage for the oil impregnated insulation paper being DC pre-stressing is higher than that without pre-stressing. The average DC breakdown field strength difference between the test with pre-stressing and without pre-stressing clearly shows that there is an apparent enhancement effect for the homo-charge injection on the DC breakdown.

A study on the barrier effect with respect to the condition of solid insulation materials in GN2

  • Lee, Hongseok;Mo, Young Kyu;Lee, Onyou;Kim, Junil;Bang, Seungmin;Kang, Jong O;Nam, Seokho;Kang, Hyoungku
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.44-47
    • /
    • 2015
  • High voltage superconducting apparatuses have been developed presently around the world under AC and DC sources. In order to improve electrical reliability of superconducting apparatuses with AC and DC networks, a study on the DC as well as the AC electrical breakdown characteristics of cryogenic insulations should be conducted for developing a high voltage superconducting apparatus. Recently, a sub-cooled liquid nitrogen cooling system is known to be promising method for developing a high voltage superconducting apparatus. A sub-cooled liquid nitrogen cooling system uses gaseous nitrogen to control the pressure and enhance the dielectric characteristics. However, the dielectric characteristics of gaseous nitrogen are not enough to satisfy the grade of insulation for a high voltage superconducting apparatus. In this case, the application of solid insulating barriers is regarded as an effective method to reinforce the dielectric characteristics of a high voltage superconducting apparatus. In this paper, it is dealt with a barrier effect on the DC and AC dielectric characteristics of gaseous nitrogen with respect to the position and number of solid insulating barriers. As results, the DC and AC electrical breakdown characteristics by various barrier effects is verified.

Field Application of Power Cable Diagnosis System (전력케이블 열화진단기법의 현장적용)

  • Kim, Ju-Yong;Han, Jae-Hong;Song, Il-Keun;Kim, Sang-Jun;Lee, Jae-Bong;Oh, Jae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.148-151
    • /
    • 2002
  • In order to prevent the failures of underground distribution power cables we need to measure insulation condition in the field. Until now we used DC high voltage as a power source for the cable diagnosis but it was not proper method to the XLPE insulation cables because DC high voltage can affect sound insulation and can't diagnose exactly insulation degradation. For these reasons we imported isothermal relaxation current measurement system called by KDA-1 from germany but it's reliability did not proved in our URD cables. DC voltage decay measurement system was developed by domestic company but they don't have field experience. In this paper we tried to prove reliability of these two systems in the field. Through the field diagnosis and Ac breakdown test the two systems showed similar results.

  • PDF

A Study on the Electrical Fire Risk Assessment Methods of LED Lightings for Outdoor (옥외용 LED 조명의 전기화재 위험성 평가기법에 관한 연구)

  • Kim, Hyang-Kon;Kim, Dong-Ook;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.674-679
    • /
    • 2011
  • In this paper, we experimented and analyzed about electric fire risk assessment methods of LED lightings for outdoor. LED lighting is composed of AC power lines, AC/DC converter, DC power lines and LED lamps. There are some risk factors of electric fire in LED lighting such as short circuit between power lines or power line and ground, dielectric breakdown, leakage current, abnormal voltage inflow, poor contacts(connections), etc. As a result of this study, insulation coverings of wire was ignited due to dielectric breakdown between power lines and molten marks were formed in copper conductor. LED lighting was blown out while short circuit, beside that, electrical disorder did not occur. When abnormal voltage was inflowed, electronic components such as varistor, condenser were damaged. Partial heating was produced and insulation was melted and carbonized by arc and heating while poor contacts were happened. We expect that the results of this study would be helpful for electrical safety of LED lightings for outdoor.

A Study of Characteristic for Space Charge in CV Power Cable When Impressed DC and AC Voltage (직류 및 교류인가시 CV전력 케이블에 미치는 공간전하 특성 연구)

  • Jung, Young-Ill;Lim, Yong-Bae;Kim, Jong-Seo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1960-1962
    • /
    • 2000
  • Polyehtylene[PE] in polymer insulation materials of used power cable have carried out in abundance of experiment and study for electrical conduction. insulation breakdown. dielectric character and so on. When apply to field for power cable to make PE, application of DC withstand test to put in practice for inspection is get to effect accumulated space charge. In this paper, to make use of Pulsed Electro-Acoustic(PEA). It is analysis to take shape space charges under AC and DC voltage, clear up the point at issue for effect of DC withstand test.

  • PDF

Dielectric Breakdown Characteristics of PPLP and GFRP for HTS DC Cable System (고온초전도 DC 케이블 시스템용 PPLP 및 GFRP의 절연 특성)

  • Kim, S.H.;Choi, J.H.;Kim, W.J.;Jang, H.M.;Lee, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.5-9
    • /
    • 2011
  • DC high-temperature superconducting(HTS) cable system has attracted a great deal of interest from the view point of low loss, dense structure and large capacity. A HTS cable system is made of cable and termination. The insulating materials and insulation technology must be solved for the long life, reliability and compact of cable system. In this paper, we will report on the dielectric breakdown characteristics of insulating materials for HTS cable and termination. The AC, DC and lightning impulse breakdown strength of laminated polypropylene paper(PPLP) and glass fiber reinforced plastic(GFRP) have been measured under nitrogen pressures in the range of 0.l-0.4MPa. PPLP and GFRP are found to have a significantly higher DC breakdown strength. Also, DC surface flashover voltage of negative polarity is slightly higher than that of positive polarity in GFRP.