• Title/Summary/Keyword: AC PDP

Search Result 670, Processing Time 0.026 seconds

A New Sustain Driving Method for AC PDP : Charge-Controlled Driving Method

  • Kim, Joon-Yub
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.292-296
    • /
    • 2002
  • A new sustain driving method for the AC PDP is presented. In this driving method, the voltage source is connected to a storage capacitor, this storage capacitor charges an intermediate capacitor through LC resonance, and the panel is charged from the intermediate capacitor indirectly. In this way, the current flowing into the AC PDP when the sustain discharge occurs is reduced because the current is indirectly supplied from a capacitor, a limited source of charge. Thus, the input power to the output luminance efficiency is improved. Since the voltage supplied to the storage capacitor is doubled through LC resonance, this method call drive an AC PDP with a voltage source of about half of the voltage necessary in the conventional driving methods. The experiments showed that this charge-controlled driving method could drive ail AC PDP with a voltage source of as low as 107V. Using a panel of the conventional structure, luminous efficiency of 1.28 lm/W was achieved.

Design and Implementation of AC-PDP Power Supply using Planar Magnetic Components (박형 자기소자를 이용한 AC-PDP 전원회로의 설계 및 제작)

  • Kim Myoungsoo;Choi Byungcho
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.677-681
    • /
    • 2004
  • This paper presents the design and implementation of a low-profile power supply developed for AC-PDP application systems. In the proposed power supply, planar magnetics and SMD devices are integrated into advanced power conversion techniques to implement a low-profile power supply applicable to most AC-PDP application systems. Engineering details on the design and fabrication of planar magnetic components are presented. The performance of the prototype power supply is also demonstrated to validate the application potentials of the proposed power supply.

  • PDF

Addressibility and dynamic margin in AC-PDP with ramp resets pulses

  • 정용환
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.199-199
    • /
    • 2000
  • 본 실험은 궁극적으로 coplanar AC-PDP 구동의 고효율(η)과 고화질을 목표로 두고 있는 기초 물리실험이다. AC-PDP의 최적화는 이 외에 많은 요소를 가지고 있으므로 다각도로 고찰하여야 한다. 이번 연구에서는 VDS(versatile driving simulator)를 이용하여 ramp resets pulses에서의 addressibility를 dynamic margin의 관점에서 조사하였다. AC-PDP panel의 구조는 R,G,B 3개의 cell이 모여 한 개의 화소를 이루고 있으며, R,G,B 각각의 Vf가 다르게 Va가 각각 다르다. 그러므로 실험을 통해 panel에서 R,G,B의 Vf-Va 공통 영역을 최적화하려는데 의미를 두고 있다.

  • PDF

Improvement of Color Temperature using Auxiliary Address Pulse Driving Scheme in 42-in. WVGA Plasma Display Panel

  • Park, Ki-Hyung;Lee, Eun-Cheol;Cho, Ki-Duck;Tae, Heung-Sik;Chien, Sung-Il
    • Journal of Information Display
    • /
    • v.6 no.1
    • /
    • pp.22-27
    • /
    • 2005
  • Auxiliary address pulse driving scheme is proposed for controlling and improving the color temperature of the 42-inch WVGA ac-plasma display panel (ac-PDP) without sacrificing total luminance. Under a white-background, the color temperature of 42-inch ac-PDP is improved by about 1,700 K, whereas under a black-background, the color temperature of 42-inch ac-PDP is improved by about 3,200 K. In addition, by properly controlling the luminance in the R, G, and B cells, the color temperature of 42-inch ac-PDP can be raised from 5,827K to 10,705K.

An Energy Recovery Circuit for AC Plasma Display Panel with Serially Coupled Load Capacitance-SER1

  • Yang, Jin-Ho;Whang, Ki-Woong;Kang, Kyoung-Ho;Kim, Young-Sang;Kim, Hee-Hwan;Park, Chang-Bae
    • Journal of Information Display
    • /
    • v.2 no.4
    • /
    • pp.63-67
    • /
    • 2001
  • The switching power loss due to the panel capacitance during sustain period in AC PDP driving system can be minimized by using the energy recovery circuits. We proposed a new energy recovery circuit, SER1 (Seoul national univ. Energy Recovery circuit 1st). The experimental results of its application to a 42-inch surface discharge type AC PDP showed superior performance of SER1 in energy recovery efficiency and low distortion voltage waveform. Energy recovery efficiency of SER1 was measured up to 92.3 %, and the power dissipation during the sustain period was reduced by 15.2 W in 2000 pulse/frame compared with serial LC resonance energy recovery circuit.

  • PDF

A Study on the Dielectric Breakdown voltage and Transparency of Dielectric Layer in AC PDP (AC PDP 유전층의 절연파괴 전압과 투명도에 관한 연구)

  • Park, Jeong-Hu;Lee, Seong-Hyeon;Kim, Gyu-Seop;Son, Je-Bong;Jo, Jeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.1
    • /
    • pp.39-44
    • /
    • 1999
  • The dielectric layers in AC plasma display panel(PDP) are essential to the discharge cell structure, because they protect metal electrodes from sputtering by positive ion bombarding in discharge plasma and form a sheath of wall charges which are essential to memory function of AC PDP. This layer should have high dielectric breakdown voltage, and also be transparent because the luminance of PDP is strongly correlated this layer. In this paper, we discussed the dielectric breakdown voltage and transparency of the dielectric layer under various conditions. As a result, on the $15\mum$ thickness, the minimum dielectric breakdown voltage was 435V and the transmission coefficient was about 80% after $570^{\circ}C$ firing process. It can be proposed that the resonable dielectric thickness in AC PDP is $15\mum$ because it has about 75V margin on the maximum applied voltage.

  • PDF

Secondary Electron Emission Characteristics of Functional Layer in AC-PDP

  • Son, Chang-Gil;Han, Young-Gyu;Kim, Yong-Hee;Cho, Byeong-Seong;Hong, Young-Jun;Song, Ki-Baek;Bae, Young-Joo;Kim, In-Tae;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.736-739
    • /
    • 2009
  • We have studied that the secondary electron emission characteristics of functional layers which have different kinds of MgO sub-micrometer size powder in AC-PDP. We used cathodoluminescence(CL) and gamma focused ion beam (${\gamma}$-FIB) system for measurement of secondary electron emission characteristics. Also we made 6 inch test panel which applied functional layers for evaluation of discharge characteristics.

  • PDF

Reset Waveform Generation Circuit Adapting To Temperature Change (온도 적응형 PDP RESET 파형 발생회로의 개발)

  • Shin Min-Ho;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.587-591
    • /
    • 2005
  • Driving Waveform of AC PDP in reset periode is increased and decreased with constant slope to improve dark room contrast ratio and image quality. But the slope and magnitude of ramp waveform are related to strong and weak discharge with temperature change in AC PDP. So this paper proposes a methods of changing the slope and magnitude of ramp waveform during reset periode according to temperature change in AC PDP. Experimental variable factors ire chosen to setup slope, setdown slope, and -Vy voltage magnitude in Y sustain electrode. The proposed methods are expected to compensate for effect of the temperature change, causing misfiring in high and low temprature, with varing the slope and magnitude of ramp voltage during reset period and improve image quality.

Effect of Protrusion Electrode of the Electro-Optical Characteristics of AC PDP with Long Electrode Gap (Long 전극갭을 가지는 AC PDP의 전기광학적 특성에 미치는 돌기전극의 영향)

  • Heo, Jeong-Eun;Ok, Jung-Woo;Lee, Don-Kyu;Lee, Hae-June;Lee, Ho-Jun;Park, Chung-Hoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1422-1428
    • /
    • 2008
  • In the current PDP technology, one of the most important issues in AC PDP is improvement of luminance and luminous efficacy. To improve luminance and luminous efficacy, new cell structure of PDP containing long discharge path is necessary. However, it causes an increment of firing voltage. In order to decrease firing voltage of AC PDP having long discharge gap, the protrusion electrode is proposed. To drop the firing voltage, the protrusion electrode is inserted into the forward area of the main discharge gap. This paper presents measurements of detailed optical and electrical characteristics of AC PDP with protrusion electrodes. The experimental results show that the proposed structure with gap 80um has lower firing voltage to 27V than that of the conventional long gap structure. Moreover, the ICCD(Intensified Charge Coupled Device) images of the proposed structure show quick discharge generation by 0.07usec and longer continuation by 0.05usec than that of the conventional long gap structure. Therefore, the proposed protrusion electrodes have higher luminance by 12.5% than that of the conventional structure, as having no decrement of Luminous efficacy.

Influence of constraint MgO deposition onto phosphors on luminance properties in AC Plasma Display Panels

  • Jeoung, Jin-Man;OH, P.Y.;Moon, M.W.;Lee, J.H.;Jeong, J.E.;Lee, H.J.;Han, Y.K.;Lee, S.B.;Jeong, S.H.;Yoo, C.K.;Yoo, N.R.;Choi, E.H.;Ko, B.D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1215-1217
    • /
    • 2005
  • One of the important problems in recent AC-PDP technology is the image sticking. In this research, we have investigated the PDP cell with constraint deposition MgO on phosphor, the electrical and optical properties in the PDP cell were examined. Also, we have investigated the correlation with image sticking and degraded MgO protective layer, phosphor in AC-PDP. As a result, we measured the secondary electron emission coefficient ${\gamma}$, discharge characteristics and Brightness for the constraint degraded phosphor are compared with those of nondegraded phosphor.

  • PDF