• Title/Summary/Keyword: ABAQUS model

Search Result 629, Processing Time 0.029 seconds

Finite element modeling of corroded RC beams using cohesive surface bonding approach

  • Al-Osta, Mohammed A.;Al-Sakkaf, Hamdi A.;Sharif, Alfarabi M.;Ahmad, Shamsad;Baluch, Mohammad H.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.167-182
    • /
    • 2018
  • The modeling of loss of bond between reinforcing bars (rebars) and concrete due to corrosion is useful in studying the behavior and prediction of residual load bearing capacity of corroded reinforced concrete (RC) members. In the present work, first the possibility of using different methods to simulate the rebars-concrete bonding, which is used in three-dimensional (3D) finite element (FE) modeling of corroded RC beams, was explored. The cohesive surface interaction method was found to be most suitable for simulating the bond between rebars and concrete. Secondly, using the cohesive surface interaction approach, the 3D FE modeling of the behavior of non-corroded and corroded RC beams was carried out in an ABAQUS environment. Experimental data, reported in literature, were used to validate the models. Then using the developed models, a parametric study was conducted to examine the effects of some parameters, such as degree and location of the corrosion, on the behavior and residual capacity of the corroded beams. The results obtained from the parametric analysis using the developed model showed that corrosion in top compression rebars has very small effect on the flexural behaviors of beams with small flexural reinforcement ratio that is less than the maximum ratio specified in ACI-318-14 (singly RC beam). In addition, the reduction of steel yield strength in tension reinforcement due to corrosion is the main source of reducing the load bearing capacity of corroded RC beams. The most critical corrosion-induced damage is the complete loss of bond between rebars and the concrete as it causes sudden failure and the beam acts as un-reinforced beam.

Experimental and numerical study on performance of long-short combined retaining piles

  • Xu, Chang J.;Ding, Hai B.;Luo, Wen J.;Tong, Li H.;Chen, Qing S.;Deng, Jian L.
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.255-265
    • /
    • 2020
  • Laboratory tests are conducted to investigate the performance of retaining system with different combinations of long-short piles. Numerical analysis implemented using ABAQUS are verified by comparing numerical results with measured data. By performing numerical studies, the horizontal displacement of piles, heave of excavation bottom and bending moment of pile for various pile system with different pile lengths are investigated. Results show that long piles share higher bending moments than short piles. The increase in the number of short piles leads to a slight increase in the heave at excavation bottom for long-short pile retaining system. Retaining system with different long and short pile combinations have greater effects on the horizontal displacement of pile above the excavation bottom, compared to its counterparts below excavation bottom. For a given length of long pile, the bending moment and displacement of piles increase with the decrease in length of short piles, while the increasing rate of maximum moment of retaining pile system is insignificant. Results highlight that a reliable and economical pile retaining system can be designed by optimizing the number and length of short piles, provided that the working performance of retaining structures above excavation bottom meets the design requirement in practice.

Test and simulation of circular steel tube confined concrete (STCC) columns made of plain UHPC

  • Le, Phong T.;Le, An H.;Binglin, Lai
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.643-657
    • /
    • 2020
  • This study presents experimental and numerical investigations on circular steel tube confined ultra high performance concrete (UHPC) columns under axial compression. The plain UHPC without fibers was designed to achieve a compressive strength ranged between 150 MPa and 200 MPa. Test results revealed that loading on only the UHPC core can generate a significant confinement effect for the UHPC core, thus leading to an increase in both strength and ductility of columns, and restricting the inherent brittleness of unconfined UHPC. All tested columns failed by shear plane failure of the UHPC core, this causes a softening stage in the axial load versus axial strain curves. In addition, an increase in the steel tube thickness or the confinement index was found to increase the strength and ductility enhancement and to reduce the magnitude of the loss of load capacity. Besides, steel tube with higher yield strength can improve the post-peak behavior. Based on the test results, the load contribution of the steel tube and the concrete core to the total load was examined. It was found that no significant confinement effect can be developed before the peak load, while the ductility of post-peak stage is mainly affected by the degree of the confinement effect. A finite element model (FEM) was also constructed in ABAQUS software to validate the test results. The effect of bond strength between the steel tube and the UHPC core was also investigated through the change of friction coefficient in FEM. Furthermore, the mechanism of circular steel tube confined UHPC columns was examined using the established FEM. Based on the results of FEM, the confining pressures along the height of each modeled column were shown. Furthermore, the interaction between the steel tube and the UHPC core was displayed through the slip length and shear stresses between two surfaces of two materials.

Flexural Behavior of Steel Composite Beam with Built-up Cross-section Considering Bolt Deformation (볼트의 변형을 고려한 강재 조립 합성보의 휨거동)

  • Kim, Sung-Bo;Kim, Hun-Kyom;Jung, Kyoung-Hwan;Han, Man-Yop;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • The analysis and results of flexural behavior for steel composite beam with built-up cross-section considering bolt deformation are presented in this paper. The bolt deformation and the restrict effect due to bolt-connection and friction are considered to investigate the flexural behavior of steel composite beam. Nonlinear spring element in ABAQUS is used to consider bolt deformation, also the results are compared with those in case bolt deformations are ignored. The displacement, bending stresses and shear stresses are calculated by F.E. model, and these results are compared with the analytical value of no interaction beam, partial interaction beam and full interaction beam. As a result of analysis, the behavior of composite beam is more dependant on the composite rate than the friction of the steel. When the composite rate is more than 50%, the behavior of composite beam considering the effects of bolt deformation is similar to that of fully composite beam.

Time dependent behavior of piled raft foundation in clayey soil

  • Fattah, Mohammed Y.;Al-Mosawi, Mosa J.;Al-Zayadi, Abbas A.O.
    • Geomechanics and Engineering
    • /
    • v.5 no.1
    • /
    • pp.17-36
    • /
    • 2013
  • Settlement of the piled raft can be estimated even after years of completing the construction of any structure over the foundation. This study is devoted to carry out numerical analysis by the finite element method of the consolidation settlement of piled rafts over clayey soils and detecting the dissipation of excess pore water pressure and its effect on bearing capacity of piled raft foundations. The ABAQUS computer program is used as a finite element tool and the soil is represented by the modified Drucker-Prager/cap model. Five different configurations of pile groups are simulated in the finite element analysis. It was found that the settlement beneath the piled raft foundation resulted from the dissipation of excess pore water pressure considerably affects the final settlement of the foundation, and enough attention should be paid to settlement variation with time. The settlement behavior of unpiled raft shows bowl shaped settlement profile with maximum at the center. The degree of curvature of the raft under vertical load increases with the decrease of the raft thickness. For the same vertical load, the differential settlement of raft of ($10{\times}10m$) size decreases by more than 90% when the raft thickness increased from 0.75 m to 1.5 m. The average load carried by piles depends on the number of piles in the group. The groups of ($2{\times}1$, $3{\times}1$, $2{\times}2$, $3{\times}2$, and $3{\times}3$) piles were found to carry about 24%, 32%, 42%, 58%, and 79% of the total vertical load. The distribution of load between piles becomes more uniform with the increase of raft thickness.

Vibration Analysis of an Elevated Railroad Station Considering Station-Bridge Connection Characteristics (교량 접속부 특성을 고려한 선하역사의 진동 해석)

  • Choi, Sanghyun;Kwon, Soonjung
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.2
    • /
    • pp.274-281
    • /
    • 2014
  • Since the vibration induced by a train is transferred directly to a station via a roadbed structure, the elevated station is particularly vulnerable to noise and vibration. To establish more appropriate measures to reduce vibration, the structural behavior and damping characteristics depending on the structural type and the composition of a elevated station should be identified, because the noise inside the station is mainly structure borne noise by the vibration of a station structure. In this paper, the vibration characteristic changes depending on mechanical connection types between an elevated station and a connected bridge are analyzed. The finite element model for Daecheon Station is constructed for the purpose of this study, and the analysis is performed using ABAQUS. The analyses are conducted for with and without bridge connections, and for the bridge connections, ramen and bearing types are considered in the analysis.

Flood fragility analysis of bridge piers in consideration of debris impacts (부유물 충돌을 고려한 교각의 홍수 취약도 해석 기법)

  • Kim, Hyunjun;Sim, Sung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.325-331
    • /
    • 2016
  • This research developed a flood fragility curve of bridges considering the debris impacts. Damage and failures of civil infrastructure due to natural disasters can cause casualties as well as social and economic losses. Fragility analysis is an effective tool to help better understand the vulnerability of a structure to possible extreme events, such as earthquakes and floods. In particular, flood-induced failures of bridges are relatively common in Korea, because of the mountainous regions and summer concentrated rainfall. The main failure reasons during floods are reported to be debris impact and scour; however, research regarding debris impacts is considered challenging due to various uncertainties that affect the failure probability. This study introduces a fragility analysis methodology for evaluating the structural vulnerability due to debris impacts during floods. The proposed method describes how the essential components in fragility analysis are considered, including limit-state function, intensity measure of the debris impact, and finite element model. A numerical example of the proposed fragility analysis is presented using a bridge pier system under a debris impact.

Investigations of different steel layouts on the seismic behavior of transition steel-concrete composite connections

  • Qi, Liangjie;Xue, Jianyang;Zhai, Lei
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.173-185
    • /
    • 2019
  • This article presents a comparative study of the effect of steel layouts on the seismic behavior of transition steel-concrete composite connections, both experimental and analytical investigations of concrete filled steel tube-reinforced concrete (CFST-RC) and steel reinforecd concrete-reinforced concrete (SRC-RC) structures were conducted. The steel-concrete composite connections were subjected to combined constant axial load and lateral cyclic displacements. Tests were carried out on four full-scale connections extracted from a real project engineering with different levels of axial force. The effect of steel layouts on the mechanical behavior of the transition connections was evaluated by failure modes, hysteretic behavior, backbone curves, displacement ductility, energy dissipation capacity and stiffness degradation. Test results showed that different steel layouts led to significantly different failure modes. For CFST-RC transition specimens, the circular cracks of the concrete at the RC column base was followed by steel yielding at the bottom of the CFST column. While uncoordinated deformation could be observed between SRC and RC columns in SRC-RC transition specimens, the crushing and peeling damage of unconfined concrete at the SRC column base was more serious. The existences of I-shape steel and steel tube avoided the pinching phenomenon on the hysteresis curve, which was different from the hysteresis curve of the general reinforced concrete column. The hysteresis loops were spindle-shaped, indicating excellent seismic performance for these transition composite connections. The average values of equivalent viscous damping coefficients of the four specimens are 0.123, 0.186 and 0.304 corresponding to the yielding point, peak point and ultimate point, respectively. Those values demonstrate that the transition steel-concrete composite connections have great energy dissipating capacity. Based on the experimental research, a high-fidelity ABAQUS model was established to further study the influence of concrete strength, steel grade and longitudinal reinforcement ratio on the mechanical behavior of transition composite connections.

EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements

  • Rezaei, Amir H.;Shirzehhagh, Mojtaba;Golpasand, Mohammad R. Baghban
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.153-165
    • /
    • 2019
  • A case study of monitoring and analysis of surface settlement induced by tunneling of Tabriz metro line 2 (TML2) is presented in this paper. The TML2 single tunnel has been excavated using earth pressure balanced TBM with a cutting-wheel diameter of 9.49 m since 2015. Presented measurements of surface settlements, were collected during the construction of western part of the project (between west depot and S02 station) where the tunnel was being excavated in sand and silt, below the water table and at an average axis depth of about 16 m. Settlement readings were back-analyzed using Gaussian formula, both in longitudinal and transversal directions, in order to estimate volume loss and settlement trough width factor. In addition to settlements, face support and tail grouting pressures were monitored, providing a comprehensive description of the EPB performance. Using the gap model, volume loss prediction was carried out. Also, COB empirical method for determination of the face pressure was employed in order to compare with field monitored data. Likewise, FE simulation was used in various sections employing the code Simulia ABAQUS, to investigate the efficiency of numerical modelling for the estimating of the tunneling induced-surface settlements under such a geotechnical condition. In this regard, the main aspects of a mechanized excavation were simulated. For the studied sections, numerical simulation is not capable of reproducing the high values of in-situ-measured surface settlements, applying Mohr-Coulomb constitutive law for soil. Based on results, for the mentioned case study, the range of estimated volume loss mostly varies from 0.2% to 0.7%, having an average value of 0.45%.

Investigation on SCFs of concrete-filled circular chord and square braces K-joints under balanced axial loading

  • Chen, Yu;Hu, Kang;Yang, Jian
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1227-1250
    • /
    • 2016
  • Most of the research work has been conducted on K-joints under static loading. Very limited information is available in consideration of fatigue strength of K-joints with concrete-filled chord. This paper aims to describe experimental and numerical investigations on stress concentration factors (SCFs) of concrete-filled circular chord and square braces K-joints under balanced axial loading. Experiment was conducted to study the hot spot stress distribution along the intersection of chord and braces in the two specimens with compacting concrete filled in the chord. The test results of stress distribution curves of two specimens were reported. SCFs of concrete-filled circular chord and square braces K-joints were lower than those of corresponding hollow circular chord and square brace K-joints. The corresponding finite element analysis was also conducted to simulate stress distribution along the brace and chord intersection region of joints. It was achieved that experimental and finite element analysis results had good agreement. Therefore, an extensive parametric study was carried out by using the calibrated finite element model to evaluate the effects of main geometric parameters and concrete strength on the behavior of concrete-filled circular chord and square braces K-joints under balanced axial loading. The SCFs at the hot spot locations obtained from ABAQUS were compared with those calculated by using design formula given in the CIDECT for hollow SHS-SHS K-joints. CIDECT Design Guide was generally quite conservative for predicting SCFs of braces and was dangerous for predicting SCFs of chord in concrete-filled circular chord and square braces K-joints. Finally SCF formulae were proposed for circular chord and square braces K-joints with concrete-filled in the chord under balanced axial loading. It is shown that the SCFs calculated from the proposed design equation are generally in agreement with the values derived from finite element analysis, which were proved to be reliable and accurate.