• 제목/요약/키워드: AASIST

검색결과 2건 처리시간 0.015초

컨시스트: 오디오 딥페이크 탐지를 위한 그래프 어텐션 기반 새로운 모델링 방법론 연구 (CoNSIST: Consist of New Methodologies on AASIST for Audio Deepfake Detection)

  • 하재훈;문주원;이상엽
    • 정보처리학회 논문지
    • /
    • 제13권10호
    • /
    • pp.513-519
    • /
    • 2024
  • 인공지능 기술의 발전과 함께 딥러닝 기반의 오디오 딥페이크 기술이 크게 향상되었고, 이를 악용하여 다양한 범죄 활동이 이루어지고 있다. 오디오 딥페이크를 탐지하여 이러한 피해를 예방하기 위해 본 논문은 새로운 컨시스트(CoNSIST) 모델을 제안한다. 이 모델은 그래프 기반의 모델인 AASIST를 기반으로, 세 가지 추가적인 모델링 방법론을 적용하여 오디오 딥페이크 탐지를 한다. 세 가지 추가적인 모델링을 통해 특징 추출을 강화하고, 불필요한 작업을 제거하며, 다양한 정보를 통합하는 것을 목표로 한다. 최종 실험 결과, 컨시스트가 기존 오디오 딥페이크 탐지 모델들보다 더 우수한 성능을 보여 딥페이크의 악용을 방지하기 위해 더 나은 해결책을 제공한다.

CoNSIST : Consist of New methodologies on AASIST, leveraging Squeeze-and-Excitation, Positional Encoding, and Re-formulated HS-GAL

  • Jae-Hoon Ha;Joo-Won Mun;Sang-Yup Lee
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.692-695
    • /
    • 2024
  • With the recent advancements in artificial intelligence (AI), the performance of deep learning-based audio deepfake technology has significantly improved. This technology has been exploited for criminal activities, leading to various cases of victimization. To prevent such illicit outcomes, this paper proposes a deep learning-based audio deepfake detection model. In this study, we propose CoNSIST, an improved audio deepfake detection model, which incorporates three additional components into the graph-based end-to-end model AASIST: (i) Squeeze and Excitation, (ii) Positional Encoding, and (iii) Reformulated HS-GAL, This incorporation is expected to enable more effective feature extraction, elimination of unnecessary operations, and consideration of more diverse information, thereby improving the performance of the original AASIST. The results of multiple experiments indicate that CoNSIST has enhanced the performance of audio deepfake detection compared to existing models.