• 제목/요약/키워드: A549 and apoptosis

검색결과 222건 처리시간 0.05초

천심련(穿心蓮)이 A549 폐암세포에 미치는 영향 (Effects of Andrographitis Herba in A549 Lung Cancer Cells)

  • 범희변;한효상;이영종
    • 대한본초학회지
    • /
    • 제25권2호
    • /
    • pp.107-116
    • /
    • 2010
  • Objectives : This study purposed to research the anti-cancer effects of Andrographitis Herba. Methods : By measuring the cell proliferation, apoptosis, morphology and cytokine level from the extracts, the influence on a A549 cell was compared. Results : The Andrographitis Herba decoction extract according to the concentration inhibited the proliferation and increased the apoptosis of the A549 cell. Among the various fraction extracts of the Andrographitis Herba decoction, EtOEt showed the greatest increase of the apoptosis of the A549 cell. The Andrographitis Herba decoction extract according to the concentration decreased the secretion of the TGF-$\beta$ in the A549 cell, and increased the secretion of the TNF-$\alpha$ and the IFN-$\gamma$ presenting cell population. Conclusion : It is considered that the total extract and various fraction extracts of Andrographitis Herba decoction inhibit the proliferation of A549 cells.

Vanillin oxime inhibits lung cancer cell proliferation and activates apoptosis through JNK/ERK-CHOP pathway

  • Shen, Jie;Su, Zhixiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권4호
    • /
    • pp.273-280
    • /
    • 2021
  • Lung cancer despite advancement in the medical field continues to be a major threat to human lives and accounts for a high proportion of fatalities caused by cancers globally. The current study investigated vanillin oxime, a derivative of vanillin, against lung cancer cells for development of treatment and explored the mechanism. Cell viability changes by vanillin oxime were measured using MTT assay. Vanillin oxime-mediated apoptosis was detected in A549 and NCI-H2170 cells at 48 h of exposure by flow cytometry. The CEBP homologous protein (CHOP) and death receptor 5 (DR5) levels were analysed by RT-PCR and protein levels by Western blotting. Vanillin oxime in concentration-dependent way suppressed A549 and NCI-H2170 cell viabilities. On exposure to 12.5 and 15 μM concentrations of vanillin oxime elevated Bax, caspase-3, and -9 levels in A549 and NCI-H2170 cells were observed. Vanillin oxime exposure suppressed levels of Bcl-2, survivin, Bcl-xL, cFLIP, and IAPs proteins in A549 and NCI-H2170 cells. It stimulated significant elevation in DR4 and DR5 levels in A549 and NCI-H2170 cells. In A549 and NCI-H2170 cells vanillin oxime exposure caused significant (p < 0.05) enhancement in CHOP and DR5 mRNA expression. Vanillin oxime exposure of A549 and NCI-H2170 cells led to significant (p < 0.05) enhancement in levels of phosphorylated extracellular-signal-regulated kinase and c-Jun N-terminal kinase. Thus, vanillin oxime inhibits pulmonary cell proliferation via induction of apoptosis through tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated pathway. Therefore, vanillin oxime may be studied further to develop a treatment for lung cancer.

Induction of Apoptosis in Arsenic Trioxide-treated Lung Cancer A549 Cells by Buthionine Sulfoximine

  • Han, Yong Hwan;Kim, Sung Zoo;Kim, Suhn Hee;Park, Woo Hyun
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.158-164
    • /
    • 2008
  • Arsenic trioxide (ATO) affects many biological processes such as cell proliferation, apoptosis, differentiation and angiogenesis. L-buthionine sulfoximine (BSO) is an inhibitor of GSH synthesis. We tested whether ATO reduced the viability of lung cancer A549 cells in vitro, and investigated the in vitro effect of the combination of ATO and BSO on cell viability in relation to apoptosis and the cell cycle. ATO caused a dose-dependant decrease of viability of A549 cells with an $IC_{50}$ of more than $50{\mu}m$. Low doses of ATO or BSO ($1{\sim}10{\mu}m$) alone did not induce cell death. However, combined treatment depleted GSH content and induced apoptosis, loss of mitochondrial transmembrane potential (${\Delta}{\Psi}_m$) and cell cycle arrest in G2. Reactive oxygen species (ROS) increased or decreased depending on the concentration of ATO. In addition, BSO generally increased ROS in ATO-treated A549 cells. ROS levels were at least in part related to apoptosis in cells treated with ATO and/or BSO. In conclusion, we have demonstrated that A549 lung cells are very resistant to ATO, and that BSO synergizes with clinically achievable concentration of ATO. Our results suggest that combination treatment with ATO and BSO may be useful for treating lung cancer.

Pemetrexed Induces G1 Phase Arrest and Apoptosis through Inhibiting Akt Activation in Human Non Small Lung Cancer Cell Line A549

  • Wu, Dong-Ming;Zhang, Peng;Xu, Guang-Chao;Tong, Ai-Ping;Zhou, Cong;Lang, Jin-Yi;Wang, Chun-Ting
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권4호
    • /
    • pp.1507-1513
    • /
    • 2015
  • Pemetrexed is an antifolate agent which has been used for treating malignant pleural mesothelioma and non small lung cancer in the clinic as a chemotherapeutic agent. In this study, pemetrexed inhibited cell growth and induced G1 phase arrest in the A549 cell line. To explore the molecular mechanisms of pemetrexed involved in cell growth, we used a two-dimensional polyacrylamide gel electrophoresis (2-DE) proteomics approach to analyze proteins changed in A549 cells treated with pemetrexed. As a result, twenty differentially expressed proteins were identified by ESI-Q-TOF MS/MS analysis in A549 cells incubated with pemetrexed compared with non-treated A549 cells. Three key proteins (GAPDH, HSPB1 and EIF4E) changed in pemetrexed treated A549 cells were validated by Western blotting. Accumulation of GAPDH and decrease of HSPB1 and EIF4E which induce apoptosis through inhibiting phosphorylation of Akt were noted. Expression of p-Akt in A549 cells treated with pemetrexed was reduced. Thus, pemetrexed induced apoptosis in A549 cells through inhibiting the Akt pathway.

Induction of ER Stress-Mediated Apoptosis by ${\alpha}$-Lipoic Acid in A549 Cell Lines

  • Kim, Jong-In;Cho, Sung-Rae;Lee, Chang-Min;Park, Eok-Sung;Kim, Ki-Nyun;Kim, Hyung-Chul;Lee, Hae-Young
    • Journal of Chest Surgery
    • /
    • 제45권1호
    • /
    • pp.1-10
    • /
    • 2012
  • Background: ${\alpha}$-Lipoic acid (${\alpha}$-LA) has been studied as an anticancer agent as well as a therapeutic agent for diabetes and obesity. We performed this study to evaluate the anticancer effects and mechanisms of ${\alpha}$-LA in a lung cancer cell line, A549. Materials and Methods: ${\alpha}$-LA-induced apoptosis of A549 cells was detected by fluorescence-activated cell sorting analysis and a DNA fragmentation assay. Expression of apoptosis-related genes was analyzed by western blot and reverse transcription.polymerase chain reaction analyses. Results: ${\alpha}$-LA induced apoptosis and DNA fragmentation in A549 cells in a dose- and time-dependent manner. ${\alpha}$-LA increased caspase activity and the degradation of poly (ADP-ribose) polymerase. It induced expression of endoplasmic reticulum (ER) stress-related genes, such as glucose-regulated protein 78, C/EBP-homologous protein, and the short form of X-box binding protein-1, and decreased expression of the anti-apoptotic protein, X-linked inhibitor of apoptosis protein. Reactive oxygen species (ROS) production was induced by ${\alpha}$-LA, and the antioxidant N-acetyl-L-cysteine decreased the ${\alpha}$-LA-induced increase in expression of apoptosis and ER stress-related proteins. Conclusion: ${\alpha}$-LA induced ER stress-mediated apoptosis in A549 cells via ROS. ${\alpha}$-LA may therefore be clinically useful for treating lung cancer.

Radix Tetrastigma Hemsleyani Flavone Induces Apoptosis in Human Lung Carcinoma A549 Cells by Modulating the MAPK Pathway

  • Zhong, Liang-Rui;Chen, Xian;Wei, Ke-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5983-5987
    • /
    • 2013
  • Radix Tetrastigma Hemsleyani Flavone (RTHF) is widely used as a traditional herb for its detoxification and anti-inflammation activity. Recently, several studies have shown that RTHF can inhibit growth and induce apoptosis in human cancer cell lines. However, the mechanisms are not completely understood yet. In this study we investigated the potential effects of RTHF on growth and apoptosis in human lung adenocarcinoma A549 cells as well as its mechanisms. A549 cells were treated with RTHF at various concentrations for different times. In vitro the MTT assay showed that RTHF had obvious anti-proliferation effects on A549 cells in a dose- and time-dependent manner. Cell morphological changes observed by inverted microscope and Hoechst33258 methods were compared with apoptotic changes observed by fluorescence microscope. Cell apoptosis inspected by flow cytometry showed significant increase in the treatment group over the control group (P<0.01). Expression of apoptosis related Bax/Bcl-2, caspases and MAPK pathway proteins were detected by Western blotting. The results showed that RTHF up-regulated the Bax/Bcl-2 ratio and cle-caspase3/9, cle-PARP expression in a dose-dependent manner. Expression of p-p38 increased, p-ERK decreased significantly and that of p-JNK was little changed in the RTHF group when compared with the control group. These results suggest that RTHF might exert anti-growth and apoptosis activity against lung cancer A549 cells through activation of caspases and Bcl-2 family proteins and the MAPK pathway, therefore presenting as a promising therapeutic agent for the treatment of lung cancer.

Gallotannin regulates apoptosis and COX-2 expression via Akt and p38kinase pathway in human lung cancer cell line, A549

  • Yu, Seon-Mi;Gweon, Eun-Jeong;Chung, Ki-Wha;Kim, Kwang-Hoon;Cho, Hong-Sik;Kim, Song-Ja
    • Animal cells and systems
    • /
    • 제16권5호
    • /
    • pp.366-375
    • /
    • 2012
  • Gallotannin (GT) is derived from plant poly phenol and is associated with biological actions in a wide range of cells. In this study, we evaluated the effect of GTon apoptosis and cyclooxygenase-2 (COX-2) expression and attempted to shed light on the mechanism of action in A549 human lung carcinoma cells. We found that GT dramatically induced apoptosis as demonstrated by expression of p53 and active caspase-3 via western blot analysis and fragmented DNA as detected by DNA fragmentation and DAPI staining. We also observed that GT significantly causes COX-2 expression in a dose-dependent manner determined by western blot analysis. Phosphorylation of Akt and p38 was considerably increased by GT in A549 human lung carcinoma cells. Inhibition of Akt and p38kinase with LY294002 or SB203580 suppressed GT-induced apoptosis and COX-2 expression. Furthermore, we have shown that prevention of COX-2 with NS398 or indomethacin does not any effects on apoptosis induced by GT. Taken together, our present results suggest that GT regulates apoptosis and COX-2 expression through Akt and p38kinase pathway in A549, human lung carcinoma cells.

Bufalin Induces Mitochondrial Pathway-Mediated Apoptosis in Lung Adenocarcinoma Cells

  • Ding, Da-Wei;Zhang, Yong-Hong;Huang, Xin-En;An, Qing;Zhang, Xun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10495-10500
    • /
    • 2015
  • Background: To evaluate the effects of bufalin in A549 human lung adenocarcinoma epithelial cells in vitro and assess the underlying mechanisms. Materials and Methods: Human A549 non-small cell lung cancer (NSCLC) cells were treated with various concentrations of bufalin. Cell proliferation was measured by CCK-8 assay, apoptotic cell percentage was calculated by flow cytometry and morphological change was observed by inverted phase contrast microscopy/transmission electron microscopy. In addition, the membrane potential of mitochondria was detected by JC-1 fluorescence microscopy assay, and the related protein expression of cytochrome C and caspase-3 was analyzed by Western blotting. Results: Bufalin could inhibit the proliferation of A549 cells via induction of apoptosis, with the evidence of characteristic morphological changes in the nucleus and mitochondria. Furthermore, bufalin decreased the mitochondrial membrane potential with up-regulation of cytochrome C in the cytosol, and activation of caspase-3. Conclusions: Bufalin inhibits the proliferation of A549 cells and triggers mitochondria-dependent apoptosis, pointing to therapeutic application for NSCLC.

겨우살이 물추출물 첨가 김치의 A549 인체 폐암 세포 증식저해 효과 (Antiproliferative Effect of Mistletoe Extract Added Kimchi in Human Lung Carcinoma A549 Cells)

  • 길정하
    • 생명과학회지
    • /
    • 제27권12호
    • /
    • pp.1507-1514
    • /
    • 2017
  • 김치는 한국에서 가장 인기 있는 발효식품이며, 여러 연구에서 암예방, 항비만, 항염증 등의 활성을 가지는 건강기능성 식품으로 보고되고 있다. 본 실험에서는 김치의 기능성을 높이기 위하여 항암기능성이 알려진 겨우살이 추출물을 첨가하여 개발한 암환자용 김치(kimchi B)의 암세포 증식억제능 및 그 기전에 대하여 검토하였다. 인체 폐암 A549세포를 이용하여 증식저해 효과와 apoptosis 유도 및 관련된 mRNA 유전자 발현에 미치는 영향을 관찰하였으며, 대조군으로는 표준화김치(kimchi A)를 사용하였다. A549 인체 폐암 세포를 이용한 성장 저해시험에서 MTT 방법과 hemocytometer를 이용하여 암세포 수를 개수한 결과, 김치를 첨가한 군에서 농도 의존적으로 증식억제 효과가 나타났으며, 특히 kimchi B를 첨가한 군에서 더 높은 증식억제 효과를 확인할 수 있었다. DAPI 염색을 통해 암세포 핵의 형태적 특징을 조사한 결과 kimchi B를 첨가한 군에서 DNA단편이 발견되어, A549 인체 폐암세포의 증식억제효과는 apoptosis에 의한 것으로 관찰되었다. Apoptosis의 기전을 알아보기 위하여 Bcl-2 family (Bax, Bcl-2, Bcl-xL) 발현과 p53, p21 발현을 측정한 결과, kimchi B를 첨가한 군에서 Bax 유전자는 증가하고 Bcl-2 유전자 발현이 감소하여, 이들 유전자 발현과 관련되어 apoptosis가 유도되었음을 확인할 수 있었으며, 이들 유전자들의 발현은 p21 발현 증가에 의한 것으로 보아 kimchi B를 처리한 A549인체 폐암세포는 p53 비의존적인 p21 발현증가에 의해 암세포 증식저해 효과를 나타낸 것으로 사료된다. 이 연구를 바탕으로 암환자들을 위한 기능성이 증진된 김치 개발에 활용이 가능할 것으로 기대된다.

인터페론감마에 의한 A549 폐암세포주 세포독성의 기전 (The Mechanism of Interferon-$\gamma$ Induced Cytotoxicity on the Lung Cancer Cell Line, A549)

  • 오연목;유철규;정화순;김영환;한성구;심영수
    • Tuberculosis and Respiratory Diseases
    • /
    • 제43권1호
    • /
    • pp.63-68
    • /
    • 1996
  • 연구배경: 인터페론감마-(interferon-$\gamma$)는 항바이러스 효과, 암세포의 형증식 효과, 대식세포 및 B 림프구의 활성화, 주면역복합체(MHC) 항원 발현의 증가 등의 생물학적 효과를 나타낸다. 특히, 인터페론감마의 항암 효과는 이미 생체 내외에서 입증되어 실제 폐암 환자에 대한 임상 연구가 시도되고 있다. 그러나, 인터페론감마의 항암효과 기전은 여러가지 가설이 제시되기는 하고 있지만 아직 확립된 것이 없다. 세포의 괴사(necrosis)는 심한 외부의 스트레스에 의해서 발생하는 세포 사망의 형태로 잘 알려져 있다. 생명현상 중 괴사와는 전혀 다른 세포 사망의 과정으로 아포프토시스(apoptosis)가 있다. 아포프토시스는 조직의 항상성(homeostasis of tissue volume), 개체의 발생과정, 장기의 퇴행(regression), tolerance 등의 여러 생명 활동 과정에서 발생하는 세포 사망의 과정으로서, 세포질 및 핵이 분절화(fragmentation)되어 죽어가는 능동적 사망과정으로 알려져 있다. 아포프토시스에서는 수동적으로 죽어가는 괴사에서 볼 수 없는 DNA 분절화(DNA ladder pattern)가 특징적으로 관찰된다. 인터페론감마의 암세포에 대한 세포독성 기전을 연구하기 위해서 인터페론감마를 폐암세포주인 A549세 처치한 후 현미경(inverted microscope)로 A549의 변화를 관찰하였는데 A549세포가 분절화되면서 죽어가는 것을 관찰할 수 있었다. 저자들은 인터페론감마의 항암기전으로서 아포프토시스의 가능성을 평가하고자 본 연구를 시행하였다. 방법: 폐암세포주인 A549세포를 대상으로 하였다. A549세포에 여러 농도의 인터페론감마를 투여하고 24시간, 72시간, 120시간 후에 MTT(dimethylthiazolyl diphenyltetrazolium bromide) bioassay법으로 세포독성을 정량화하였다. 그리고, 100 unit/ml의 인터페론감마를 A549 세포에 120시간 처치 후, 광학 현미경으로 세포 사망의 양상을 관찰하였다. 또한, 100 unit/ml의 인터페론감마를 투여하고 120시간이 경과한 후 사망 세포의 DNA를 추출하여 1.5% agarose gel에서 전기 영동을 시행하고 ethidium bromide로 염색 후 DNA ladder pattern 유무를 관찰하였다. 결과: 1) 인터페론감마에 의한 A549 폐암세포주의 세포독성 효과는 24시간에는 거의 없다가 72시간부터 120시간 사이에 나타나기 시작하여 120시간에는 더 증가하였다. 2) 인터페론감마에 의한 A549 세포의 사망 양상은 광학현미경상 A549 세포들이 작은 분절로 나뉘면서 사망하였다. 3) 인터페론감마를 A549 폐암세포주에 처치 후 죽어기는 세포의 DNA를 추출하여 전기영동시킨 결과 아포프토시스(apoptosis)에서 특징적으로 보이는 DNA ladder pattern을 관찰할 수 있었다. 결론: 인터페론감마(interferon-$\gamma$)의 A549 폐암세포주에 대한 세포독성의 기전은 아포프토시스 과정을 통해서 일어난다.

  • PDF