• Title/Summary/Keyword: A549 Xenograft

Search Result 16, Processing Time 0.02 seconds

Synthesis and Cytotoxic Activity of 1-(1-Benzoylindoline-5-sulfonyl)-4-phenylimidazolidinones

  • Sang-Hun Jung;Hui-Soon Lee;Nam-Soo Kim;Hwan-Mook Kim;Moonsun Lee;Dong-Rack Choi;Jung-Ah Lee;Yong-Ho Chung;Eun-Yi Moon
    • Archives of Pharmacal Research
    • /
    • v.27 no.5
    • /
    • pp.478-484
    • /
    • 2004
  • The novel 1-(1-benzoylindoline-5-sulfonyl)-4-phenyl-4,5-dihydroimidazolones 2 shows highly potent and broad cytotoxicities. Their cytotoxicities against human lung carcinoma A549, human chronic myelogenous leukemia K562, and human ovarian adenocarcinoma SK-OV-3 are compatible with doxorubicin. Compound 2p (1-[(4-aminobenzoyl)indoline-5-sulfonyl])-4-phenyl-4,5-dihydroimidazolone) exhibits a cytotoxicity that is far more potent than doxorubicin and also exhibits highly effective antitumour activities against murine (3LL, Colon 26) and human xenograft (NCI-H23, SW620) tumor models.

Experimental Study on Residual Tumor Angiogenesis after Cryoablation

  • Ma, Chun-Hua;Jiang, Rong;Li, Jin-Duo;Wang, Bin;Sun, Li-Wei;Lv, Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2491-2494
    • /
    • 2014
  • Objective: To explore the mechanism and significance of tumor angiogenesis by observing changes of microvessel density (MVD) and expression of vascular endothelial growth factor (VEGF) in residual tumor tissues after cryoablation. Materials and Methods: A total of 18 nude mice xenograft models with transplanted lung adenocarcinoma cell line A549 were established and randomly divided into 3 groups when the maximum diameter of tumor reached 1 cm: control, cisplatin (DDP) and cryoablation. The nude mice were sacrificed after 21-d cryoablation to obtain the tumor tissues. Then immunohistochemistry was applied to determine MVD and the expression of VEGF in tumor tissues. Results: The tumor volumes of control group, DDP group and cryoablation group were $1.48{\pm}0.14cm^3$, $1.03{\pm}0.12cm^3$ and $0.99{\pm}0.06cm^3$ respectively and the differences were significant (P<0.01), whereas MVD values were $21.1{\pm}0.86$, $24.7{\pm}0.72$ and $29.2{\pm}0.96$ (P<0.01) and the positive expression rates of VEGF were $36.2{\pm}1.72%$, $39.0{\pm}1.79%$ and $50.8{\pm}2.14%$ (P<0.01), respectively, showing that MVD was proportional to the positive expression of VEGF (r=0.928, P<0.01). Conclusions: Cryoablation can effectively inhibit tumor growth, but tumor angiogenesis significantly increases in residual tumors, with high expression of VEGF playing an important role in the residual tumor angiogenesis.

Ginsenoside Rg5 overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter: in vitro and in vivo study

  • Feng, Sen-Ling;Luo, Hai-Bin;Cai, Liang;Zhang, Jie;Wang, Dan;Chen, Ying-Jiang;Zhan, Huan-Xing;Jiang, Zhi-Hong;Xie, Ying
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.247-257
    • /
    • 2020
  • Background: Multidrug resistance (MDR) to chemotherapy drugs remains a major challenge in clinical cancer treatment. Here we investigated whether and how ginsenoside Rg5 overcomes the MDR mediated by ABCB1 transporter in vitro and in vivo. Methods: Cytotoxicity and colon formation as well as the intracellular accumulation of ABCB1 substrates were carried out in MDR cancer cells A2780/T and A549/T for evaluating the reversal effects of Rg5. The expressions of ABCB1 and Nrf2/AKT pathway were determined by Western blotting. An A549/T cell xenograft model was established to investigate the MDR reversal activity of Rg5 in vivo. Results: Rg5 significantly reversed ABCB1-mediated MDR by increasing the intracellular accumulation of ABCB1 substrates without altering protein expression of ABCB1. Moreover, Rg5 activated ABCB1 ATPase and reduced verapamil-stimulated ATPase activity, suggesting a high affinity of Rg5 to ABCB1 binding site which was further demonstrated by molecular docking analysis. In addition, co-treatment of Rg5 and docetaxel (TXT) suppressed the expression of Nrf2 and phosphorylation of AKT, indicating that sensitizing effect of Rg5 associated with AKT/Nrf2 pathway. In nude mice bearing A549/T tumor, Rg5 and TXT treatment significantly suppressed the growth of drug-resistant tumors without increase in toxicity when compared to TXT given alone at same dose. Conclusion: Therefore, combination therapy of Rg5 and chemotherapy drugs is a strategy for the adjuvant chemotherapy, which encourages further pharmacokinetic and clinical studies.

Simultaneous Blockage of Epidermal Growth Factor Receptor and Cyclooxygenase-2 in a Human Xenotransplanted Lung Cancer Model

  • Mu, Xiao-Yan;Dong, Xue-Li;Sun, Jie;Ni, Yu-Hua;Dong, Zhang;Li, Xi-Li;Sun, Er-Lian;Yi, Zhou;Li, Gao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.69-73
    • /
    • 2014
  • The effects of erlotinib combined with celecoxib in a lung cancer xenograft model were here explored with a focus on possible mechanisms. A xenotransplanted lung cancer model was established in nude mice using the human lung cancer cell A549 cell line and animals demonstrating tumour growth were randomly divided into four groups: control, erlotinib, celecoxib and combined (erotinib and celecoxib). The tumor major axis and short diameter were measured twice a week and after 40 days tissues were collected for immunohistochemical analyses of Bcl-2 and Bax positive cells and Western-blotting analyses for the epidermal growth factor recepto (EGFR), P-EGFR, and cyclooxygenase-2 (COX-2). Tumor size in the combined group was smaller than in the others (p<0.01) and the percentage of Bcl-2 positive cells was fewer in most cases (p<0.01), while that of Bax positive cells was greater than in the erlotinib and celecoxib groups (P>0.05). Western blotting showed decreased expression of P-EGFR and COX-2 with both erlotinib and celecoxib treatments, but most pronouncedly in the combined group (P<0.05). Simultaneous blockage of the EGFR and COX-2 signal pathways exerted stronger growth effects in our human xenotransplanted lung cancer model than inhibition of either pathway alone. The anti-tumor effects were accompanied by synergetic inhibition of tumor cell apoptosis, activation of p-EGFR and expression of COX-2.

A Cancer-specific Promoter for Gene Therapy of Lung Cancer, Protein Regulator of Cytokinesis 1 (PRC1) (폐암의 유전자 치료법을 위한 암특이적인 PRC1 프로모터)

  • Cho, Young-Hwa;Yun, Hye-Jin;Kwon, Hee-Chung;Kim, Hee-Jong;Cho, Sung-Ha;Kang, Bong-Su;Kim, Yeun-Ju;Seol, Won-Gi;Park, Kee-Rang
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1395-1399
    • /
    • 2008
  • We have recently reported the PRC1 promoter as a promoter candidate to control expression of transcriptionally targeted genes for breast cancer gene therapy. We tested whether the PRC1 promoter could be also applied for the lung cancer gene therapy. In the transient transfection assay with naked plasmids containing the luciferase fused to the PRC1 promoter, the promoter showed little activity in the normal lung cell line, MRC5. However, in the lung cancer A549 cells, PRC1 showed approximately 30-fold activation which was similar to the survivin promoter, the gene whose promoter has been already reportedas a candidate for the gene therapy of lung cancer. In viral systems, the PRC1 promoter showed approximately 75% and 66% of transcriptional activity compared to the CMV promoter in the adeno-associated virus (AAV) and the adenovirus (AV) systems, respectively. However, the PRC1 promoter in either AAV or AV showed approximately 20% activity compared to the CMV promoter in the normal lung cells. In addition, human lung tumor xenograft mice showed that the PRC1 promoter activity was as strong as the CMV activity in vivo. Taken together, these results suggested that PRC1 might be a potential promoter candidate for transcriptionally targeted lung cancer gene therapy.

Synergism Induced by Combination of Farnesyl Transferase Inhibitor SCH66336 and Insulin like-Growth Factor Binding Protein-3 in apoptosis of Non-Small Cell Lung Cancer Cell lines (비소세포성 폐암 세포주에서 Farnesyl Transferase Inhibitor SCH66336과 인슐린양 성장 인자 결합 단백-3의 병용처리에 의한 세포고사 상승 작용)

  • Kim, Young;Kim, Se Kyu;Kim, Hyung Jung;Chang, Joon;Ahn, Chul Min;Kim, Sung Kyu;Chang, Yoon Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.2
    • /
    • pp.120-128
    • /
    • 2005
  • Background : Insulin-like growth factor binding protein (IGFBP)-3 regulates non-small cell lung cancer(NSCLC) cell proliferation in vitro and in vivo by inhibiting IGF-mediated signaling pathways. To have better strategies for the treatment of lung cancer, we analyzed the combining effects of adenovirus expressing IGFBP-3 (Ad5CMV-BP3) and SCH66336, a farnesyl transferase inhibitor (FTI) designed to block Ras-mediated proliferative signaling pathways. Methods : To measure the combining effects of Ad5CMV-BP3 and SCH66336 on the proliferation of NSCLC cells, human NSCLC cell lines (H1299, H596, A549, H460, and H358), SCH66336, recombinant adenovirus expressing IGFBP-3 (Ad5CMV-BP3) and athymic nude mice were used in these experiments. Results : The combination of Ad5CMV-BP3 and SCH66336 produced a synergistic enhancement in antiproliferative effects over a range of clinically achievable concentrations in a variety of NSCLC cell lines. Furthermore, we observed a significant reduction in growth of NSCLC xenograft induced in athymic nude mice. Conclusion : In conclusion, this study demonstrated for the first time that the FTI SCH66336 synergizes with IGFBP-3 and enhances its apoptotic activity in NSCLC cells in vitro and in vivo. The combined treatment of Ad5CMV-BP3 and SCH66336 raises the possibility of using this regimen in clinic for the treatment of NSCLC.