• 제목/요약/키워드: A533 Gr. B

검색결과 3건 처리시간 0.015초

THREE DIMENSIONAL ATOM PROBE STUDY OF NI-BASE ALLOY/LOW ALLOY STEEL DISSIMILAR METAL WELD INTERFACES

  • Choi, Kyoung-Joon;Shin, Sang-Hun;Kim, Jong-Jin;Jung, Ju-Ang;Kim, Ji-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제44권6호
    • /
    • pp.673-682
    • /
    • 2012
  • Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multi-component metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

NANO-STRUCTURAL AND NANO-CHEMICAL ANALYSIS OF NI-BASE ALLOY/LOW ALLOY STEEL DISSIMILAR METAL WELD INTERFACES

  • Choi, Kyoung-Joon;Shin, Sang-Hun;Kim, Jong-Jin;Jung, Ju-Ang;Kim, Ji-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제44권5호
    • /
    • pp.491-500
    • /
    • 2012
  • The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

원전 이종금속 용접부의 장기 열적 시효에 따른 미세조직 및 기계적 특성변화에 관한 고찰 (A study on the change of microstructural and mechanical properties by the long-term thermal aging of dissimilar metal welds in nuclear power plants)

  • 최경준;유승창;김지현
    • 한국압력기기공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.82-89
    • /
    • 2014
  • In this study, the metallurgical analysis and mechanical property measurement have been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at $450^{\circ}C$ for 2,750 hours. The microstructural characterization was conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy. And the mechanical properties were measured with Vickers microhardness test and nanoindentation method. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. Type-II boundaries were found in weld side of DMW and the hardness was the highest at the narrow zone between Type-II boundary and fusion boundary.