• Title/Summary/Keyword: A5083-O

Search Result 31, Processing Time 0.023 seconds

A Study on the GMA Welding Characteristics of Al5083-O Aluminum Alloy According to the Shield Gas Mixing Ratio and Heat Input (Al5083-O 알루미늄합금의 보호가스 혼합비율 및 입열량에 따른 GMA용접 특성에 관한 연구)

  • 정재강;양훈승;이동길
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.65-70
    • /
    • 2002
  • This study was to evaluate GMA welding characteristics of the A15083-O aluminum alloy according to the shield gas mixing ratio and heat input change. The GMA welding of the base metal was carried out with flour different shield gas mixing ratios(Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%). Regarding the if1uence on the bead shape of the shield gas mixing ratio and heat input, the bead width was greatest in Ar100%+He0% mixture. But the penetration depth and area were greatest in Ar33%+He67% mixture considering that the lower Ax gas ratio, the higher bead depth and area. Also, dilution was also best in the shield gas mixing ratio. The size and number of deflects were least in Ar33%+He67% mixture. Higher He gas ratio resulted in less deflects detected by the radiographic inspection.

Relationship between Pattern of Fatigue Crack Surface and Fatigue Crack Growth Behavior under $K_{III}$ Mode-Four Point Shear in Al 5083-O (Al 5083-O재에 있어서 $K_{III}$ 모드 4점 전단 하에서의 피로파단면 무늬와 피로균열진전거동의 관계)

  • Kim, Gun-Ho;Won, Young-Jun;Sakakura, Keigo;Fujimoto, Takehiro;Nishioka, Toshihisa
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.43-44
    • /
    • 2006
  • Generally almost all fatigue crack growth is affected by model. For this reason a study on model has concentrated in the field of fracture mechanics. However the fatigue crack initiation and growth in machines and structures usually occur in mixed mode loading. If there is any relationship between the cause of fracture in mixed mode loading and fracture surface, fracture surface pattern will be the main mean explaining reasons of fatigue fracture and obtaining further information about fracture process. In this paper four point shear-fatigue test with Aluminum alloy Al 5083-O is carried out from this prospect and then the mixed mode distribution of fracture surface is examined from the result after identifying the generation of fatigue crack surface pattern. It was found from the experimental results that the fatigue crack surface pattern and the fatigue crack shear direction are remarkably consistent. Furthermore It is possible that the analysis of distribution of mixed mode through the fatigue crack surface pattern.

  • PDF

Investigation on Cavitation-Erosion Damage with the Cavitation Amplitude of Al Alloy Materials in Seawater (해수 내 다양한 알루미늄 선박용 재료의 캐비테이션 진폭에 따른 캐비테이션-침식 손상 연구)

  • Yang, Ye-Jin;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.250-258
    • /
    • 2020
  • Recently, 5000 series and 6000 series Al alloys have been used as hull materials for small and medium-sized ships because of their excellent weldability, corrosion resistance, and durability in marine environments. Al ships can navigate at high speed due to their light weight. However, cavitation-erosion problems cause reducing durability of Al ship at high speed. In this investigation, 5052-O, 5083-H321, and 6061-T6 Al alloy materials were used to evaluate the damage characteristics with amplitude (cavitation strength). As a result of the electrochemical experiments, the corrosion current density and corrosion potential of 6061-T6 in seawater were 8.52 × 10-7 A/㎠ and -0.771 V, respectively, presenting the best corrosion resistance. The cavitation-erosion experiment showed that 5052-O had the lowest hardness value and cavitation-erosion resistance. 5052-O also had a very short incubation period. As the experiment progressed for 5052-O, pitting formed and grew in a short time, and was observed as severe cavitation-erosion damage that eliminated in large quantities. Among the three specimens, 5083-H321 presented the highest hardness value and the damage rate was the smallest after the initiation of pitting.

Microstructure of the Hybrid Al2O3-TiC/Al Composite by Rapid Solidification and Stone Mill Process. (급속응고 및 Stone Mill 공정에 의해 제조된 하이브리드 Al2O3-TiC/Al 복합재료의 미세조직)

  • 김택수;이병택;조성석;천병선
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2003
  • Hybrid $A1_2O_3-TiC$ ceramic particle reinforced 6061 and 5083 Al composite powders were prepared by the combination of twin rolling and stone mill crushing process, followed by consolidating processes of cold compaction, degassing and hot extrusion. The composite bar consists of lamellar structure of ceramic particle rich area and matrix area, in which the hybrid was decomposed into each TiC of about $3-4\mutextrm{m}$ and $AI_2O_3$ particles of about $1-2\mutextrm{m}$ in diameter. It also found that fine $Mg_2Si$ precipitates of about 30 nm were embedded in the matrix, which have grains of about 3 $\mutextrm{m}$. Higher UTS was measured at the 5083 composite bar compared to the conventionally fabricated composite, due to again refinement effect by the rapid solidification. No particle was shown to form in the interface between the matrix and reinforcement, whereas carbon was diffused into the matrix.

The Influence of Shield Gas Ratio on the Toughness of Al5083-O GMA Welding Zone (Al5083-O GMA 용접시 불활성가스 혼합비가 용접부의 인성에 미치는 영향에 관한 연구)

  • 이동길;조상곤;김건호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.653-660
    • /
    • 2002
  • In this study, the toughness was evaluated by using the instrumented Charpy impact testing procedures for A15083-O aluminum alloy used in the LNG carrying and storing tank. The specimens were GMAW welded with four different mixing shield gas ratios (Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%), and tested at four different temperatures(+25, -30, -85, and $-196^{\circ}C$) in order to investigate the influence of the mixing shield gas ratio and the low temperature. The specimens were divided into base metal, weld metal, fusion line, and HAZ specimen according to the worked notch position. From experiment, the maximum load increased a little up to -$85^{\circ}C$ , and the maximum load and maximum displacement were shown the highest and the lowest at -$196^{\circ}C$ than the other test temperatures. The absorption energy of weld metal notched specimens was not nearly depends on test temperature and mixing shield gas ratio because the casting structure was formed in weld metal zone. In the other hand, the other specimens were shown that the lower temperature, the higher absorption energy slightly up to $-85^{\circ}C$ but the energy was decreased so mush at $-196^{\circ}C$.

Heat Transfer Simulation and Effect of Tool Pin Profile and Rotational Speed on Mechanical Properties of Friction Stir Welded AA5083-O

  • El-Sayed, M.M.;Shash, A.Y.;Abd Rabou, M.
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.35-43
    • /
    • 2017
  • A 3D transient heat transfer model is developed by ABAQUS software to study the temperature distribution during friction stir welding process at different rotational speeds. Furthermore, AA 5083-O plates were joined by FSW technique. For this purpose, a universal milling machine was used to perform the welding process and a mechanical vice was used to fix the work pieces in the proper position. The joints were friction stir welded at a constant travel speed 50 mm/min and two rotational speed values; 400 rpm and 630 rpm using two types of tools; cylindrical threaded pin and tapered smooth one. At each welding condition the temperature was measured using infra-red thermal image camera to verify the simulated temperature distribution. The welded joints were visually inspected as well as by macro- and microstructure evolutions. In addition, the welded joints were mechanically tested for hardness and tensile strength. The maximum peak temperature obtained was at higher rotational speed using the threaded tool pin profile. The results showed that the rotational speed affects the peak temperature, defects formation and sizes, and the mechanical properties of friction stir welded joints. Moreover, the threaded tool gives superior mechanical properties than the tapered one at lower rotational speed.

Effect of welding condition on microstructures of weld metal and mechanical properties in Plasma-MIG hybrid welding for Al 5083 alloy (알루미늄 5083 합금의 플라즈마 미그 하이브리드 용접시 용접부 미세조직과 기계적 성질 변화에 미치는 용접조건의 영향)

  • Park, Sang-Hyeon;Lee, Hee-Keun;Kim, Jin-Young;Chung, Ha-Taek;Park, Young-Whan;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.61-71
    • /
    • 2015
  • The effect of welding condition on microstructure and mechanical property of Plasma-MIG Hybrid Weld between Al 5083 plates(thickness : 10mm) was investigated. 1 pass weld without any defects such as puckering, undercut, and lack of fusion was obtained by 150~200A of plasma current and 5~7mm of welding speed. Gas porosities and shrinkage porosities were existed in the weld near fusion line. As welding speed and plasma current were decreasing, the area fraction of porosity was increasing. The hardness of the weld is increasing as welding speed. On the basis of microstructural analysis, Mg segregated region near dendrite boundaries tends to increase with the welding speed. In the result of hardness test, Distribution of hardness in fusion zone showed little change with the plasma current. However, when the welding speed increased, hardness in weld metal markdly increased. It could be considered that effect of heat input to growth of the dendritic solidification structures. Based on tensile test, tensile properties of weld metal was predominated by area fraction of porosities. Consequently, tensile properties can be controlled by formation site and area fraction of porosity.

Relationship between Pattern of Fatigue Crack Surface and Fatigue Crack Growth Behavior under $K_{III}$ Mode-Four Point Shear in Al 5083-O

  • Kim Gun-Ho;Won Young-Jun;Sakakur Keigo;Fujimot Takehiro;Nishioka Toshihisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.474-482
    • /
    • 2006
  • Generally almost all fatigue crack growth is affected by mode I. For this reason a study on mode I has concentrated in the field of fracture mechanics. However the fatigue crack initiation and growth in machines and structures usually occur in mixed mode loading. If there is any relationship between the cause of fracture in mixed mode loading and fracture surface, fracture surface pattern will be the main mean explaining reasons of fatigue fracture and obtaining further information about fracture process. In this paper low point shear-fatigue test with Aluminum alloy hi 5083-O is carried out from this prospect and then the mixed mode distribution of fracture surface is examined from the result after identifying the generation of fatigue crack surface pattern. It was found from the experimental results that the fatigue crack surface pattern and the fatigue crack shear direction are remarkably consistent. Furthermore It is possible that the analysis of distribution of mixed mode through the fatigue crack surface pattern.

Effect of Anodizing Current Density on Anti-Corrosion Characteristics for Al2O3 Oxide Film (Al2O3 산화 피막의 내식성에 미치는 양극산화 전류밀도의 영향)

  • Lee, Seung-Jun;Jang, Seok-Gi;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.153-153
    • /
    • 2016
  • Aluminum alloys have poor corrosion resistance compared to the pure aluminum due to the additive elements. Thus, anodizing technology artificially generating thick oxide films are widely applied nowadays in order to improve corrosion resistance. Anodizing is one of the surface modification techniques, which is commercially applicable to a large surface at a low price. However, most studies up to now have focused on its commercialization with hardly any research on the assessment and improvement of the physical characteristics of the anodized films. Therefore, this study aims to select the optimum temperature of sulfuric electrolyte to perform excellent corrosion resistance in the harsh marine environment through electrochemical experiment in the sea water upon generating porous films by variating the temperatures of sulfuric electrolyte. To fabricate uniform porous film of 5083 aluminum alloy, we conducted electro-polishing under the 25 V at $5^{\circ}C$ condition for three minutes using mixed solution of ethanol (95 %) and perchloric (70 %) acid with volume ratio of 4:1. Afterward, the first step surface modification was performed using sulfuric acid as an electrolyte where the electrolyte concentration was maintained at 10 vol.% by using a jacketed beaker. For anode, 5083 aluminum alloy with thickness of 5 mm and size of $2cm{\times}2cm$ was used, while platinum electrode was used for cathode. The distance between the two was maintained at 3 cm. Afterward, the irregular oxide film that was created in the first step surface modification was removed. For the second step surface modification process (identical to the step 1), etching was performed using mixture of chromic acid (1.8 wt.%) and phosphoric acid (6 wt.%) at $60^{\circ}C$ temperature for 30 minutes. Anodic polarization test was performed at scan rate of 2 mV/s up to +3.0 V vs open circuit potential in natural seawater. Surface morphology was compared using 3D analysis microscope to observe the damage behavior. As a result, the case of surface modification presented a significantly lower corrosion current density than that without modification, indicating excellent corrosion resistance.

  • PDF

Effects of Water Cavitation Peening on Cavitation Characteristics of 5000 Series Al Alloys (5000계열 Al 합금의 캐비테이션 특성에 관한 워터 캐비테이션 피닝의 영향)

  • Kim, Seong-Jong;Hyun, Koang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.481-487
    • /
    • 2012
  • Recently, the construction of the small Al alloy ships is an increasing trend in viewpoint such as the disposal issue of a retired ship, the enhancement of environmental regulation and resources recycling etc. for FRP ships. However, Al alloy ship which can achieve high speed by light weight in marine environment is exposed to a problem on materials damage by cavitation-erosion which is generated by large impact pressure with the collapse of air bubbles due to cavitation. Consequently, in this study, water cavitation peening technology was applied in Al alloy for ship to enhance durability life by preventing cavitation damage. So, the water cavitaton peening application time that presented the excellent cavitation characteristic investigated. The weight-loss of 5456-H116, 5083-H321 and 5052-O Al alloy at the optimum water cavitation peening time were improved to 42.11 %, 50.0 % and 25.7 %, respectively.