• Title/Summary/Keyword: A356 Al alloy

Search Result 59, Processing Time 0.028 seconds

Plastic Deformation Behavior of Al-Si Alloy (Al-Si 합금의 소성변형 거동)

  • Kwon Y. N.;Kim S. W.;Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.130-133
    • /
    • 2005
  • The effect of microstructural characteristics of A356 alloys on tensile behavior was studied ill the present study. To authors' knowledge, the microstructural effect on mechanical properties of A356 alloy has not been well understood even though this alloy system is one of the most widely used alloys for the industrial purpose. Specially, quantitative relationship between properties like ductility and fracture toughness with microstructural features is lacking. In the present study, three processing routes was used to fabricate samples with different microstructures like size and distribution of primary alpha and eutectic phases. Also, compressive deformation was used to close casting porosity for the cast samples. Tensile behavior was examine and discussed in terms of microstructural aspects.

  • PDF

The Grain Size Control of A356 Aluminum Alloy by Electromagnetic Stirring (수평식 전자교반을 이용한 A356 합금의 결정립 제어)

  • Ko J. H.;Seo P. K.;Choi W. S.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.111-114
    • /
    • 2004
  • It is many devices to obtain the globular structure because the globularity of the structure is the key to the low apparent viscosity and also to good rheological properties. In this study, the morphology of the change of primary Al phase in A356 alloy by electro magnetic stirrer was investigated to obtain the globular structure. The parameters are the current, stirring time, pouring temperature individually. The greater current and longer stirring time was to get the finer the primary however in case of over the 80A of current and 60sec of stirring time, the primary Al was merged together and was increased. The effect of pouring temperature has an important effect on the size of primary phase. About the $675^{\circ}C$, the primary Al was very fined.

  • PDF

The grain size control of A356 alloy by electromagnetic stirring (전자교반을 이용한 A356 합금의 결정립제어)

  • Bae J.W.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.247-248
    • /
    • 2006
  • In this study, the morphology of the change of primary Al phase in A356 alloy by two kinds of electromagnetic stirrers(vertical and horizontal) were investigated to obtain the globular structure. The effects of the stirring current, the stirring time and the pouring temperature were determined. The greater stirring current and longer stirring time were to get the finer the Al phase. However, over a certain stirring current and stirring time, the primary Al was merged together and was increased. The reason is the degree of breakdown of initial dendrites has been decreased by the collision and coalescence of particles with increasing stirring current and stirring time. The optimum conditions and difference of the two kinds of electromagnetic stirrers have been investigated for rheology forming with controlled solid fraction.

  • PDF

Mechanical Behavior of A356 depending on the Variation of Microstructure (A356 합금 미세조직변화에 따른 기계적 특성에 관한 연구)

  • Kim K. J.;Kwon Y. N.;Lee Y. S.;Lee J. H.;Lee S. H.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.273-276
    • /
    • 2004
  • A356 alloy is one of the most popular casting aluminum alloys due to its good castability. It is well known that the mechanical properties of A356 alloy strongly depend on its characteristic microstructure, such as the size of eutectic Si, primary $\alpha$ dendrite and so on. These microstructural features are determined during the casting and solidification process, which implies the strong relationship with mechanical properties with solidification methods. In the present study, the mechanical characteristics of A356 alloy was investigated by using squeeze cast control arm in terms of the microstructural features, such as the size of eutectic Si, primary a dendrite. By doing so, the most favorable microstructure of A356 could be determined for Al control arm that should be one of the most reliable parts in automobile.

  • PDF

Effect of Reinforcement Content on Damping Capacities for Castable Aluminum Matrix Composites Reinforced with SiC and Graphite Particles (SiC와 흑연 입자 강화 주조용 Al기지 복합재료의 진동감쇠능에 미치는 강화입자조성의 효과)

  • 최유송
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.47-58
    • /
    • 2004
  • Loss factors of A356, Mn-Cu alloy and aluminum matrix composites reinforced with $SiC_p$ and Ni-coated graphite particles at various contents have been investigated using clamped-free cantilever beam method. The loss factors of half-power bandwidth of the specimens were measured over a wide range of frequencies from 50 to 3300Hz. Among the specimens, Al-10%$SiC_p$-10%$C_p$ showed the highest loss factor at the mode I, while Mn-Cu alloy showed the highest loss factors at the modes II and III. Consequently, at the mode I the Al-10%$SiC_p$--10%$C_p$ showed the loss factor of 0.00093, which is 2.64 and 1.58 times higher than those of A356 and Mn-Cu alloy, respectively.

Evaluation of Age-Hardening Characteristics of Rheo-Cast A356 Alloy by Nano/Micro Hardness Measurement (나노/마이크로 경도 측정에 의한 레오캐스트 A356 합금의 시효경화특성 평가)

  • Cho S. H.;Youn S. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.471-474
    • /
    • 2005
  • This study investigates the nano/microstructure, the aging response, and the mechanical/tribological properties of the eutectic regions in rheoformed A356 alloy-T5 parts using nano/micro-indentation and mechanical scratching, combined with optical microscopy and atomic force microscope (AFM). Most eutectic Si crystals in the A356 alloy showed a modified morphology as fine-fibers. The loading curve for the eutectic region was more irregular than that of the primary Al region due to the presence of various particles of varying strength. The aging responses of the eutectic regions in the rheoformed A356 alloys aged at $150^{\circ}C$ for different times (0, 2, 4, 8, 10, 16, 24, 36, and 72 h) were investigated. Both Victors hardness $(H_v)$ and indentation $(H_{IT})$ test results showed a similar trend of aging curves, and the peak was obtained at the same aging time of 10 h. A remarkable size-dependence of the tests was found.

  • PDF

The Effect of Electromagnetic Stirring on the Microstructure of A356 Al Alloy by the Continuous Casting Process (A356 합금의 연속주조시 전자기 교반에 따른 미세조직 변화)

  • Kim, Won-Bae;Kwon, Tae-Woo;Kim, Jong-Chul;Park, Tae-Ho;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.25 no.4
    • /
    • pp.156-160
    • /
    • 2005
  • There are many factors that influence solidification behavior during continuous casting, e.g. include superheat, casting speed, cooling rate and holding time. However, when melt is stirred by electromagnetic force, there would be some changes in its solidification behavior compared to that of the ordinary casting process. In this study, the billets of A356 alloy with a diameter of 3 inch were fabricated with electromagnetic stirring under various conditions of superheat, casting speed and input voltage of electro magnetic stirring (EMS) device. The microstructure was also investigated under the various casting conditions and electromagnetic input voltages. When increase in input voltage, the microstructure was changed from dendritic to rosette type and finally to spheroidal. With pouring temperature, casting speed and electromagnetic input voltage were $650^{\circ}C$, 100 mm/min and 140 V, respectively, the billet with a diameter of 3 inch, which has a uniform dispersed spheroidal particles in the whole area of billet except for the surface area, was manufactured.

Study on Semi-Solid Processing of Al-Si Alloys by Rotation of Permanent Magnets (영구자석의 회전을 이용한 Al-Si합금계의 반응고합금 제조공정 연구)

  • Song, In-Hyuck;Hahn, Yoo-Dong;Yun, Jung-Yeul;Ahn, Jung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.17 no.1
    • /
    • pp.67-75
    • /
    • 1997
  • The semisolid processing of two Al-Si alloys, A356 and Al-25wt%Si, was studied with using the rotor composed of permanent magnets. The semisolid slurry was agitated by the electromagnetic force induced from the rotating permant magnets. The round shaped primary ${\alpha}$ phases were formed in A356 alloy as a result of agitation. In Al25wt%Si alloy, spherodization of primary Si particles was not observed with the rotation of the magnets. The primary Si particles were segregated to the outer surface area of sample, which became pronounced with increasing the rotating speed of magnets.

  • PDF

In-Ladle Direct Thermal Control Rheocasting of A356 Al alloy (A356 Al 합금의 In-Ladle Direct Thermal Control Rheocasting)

  • Lee, Jin-Kyu;Kim, Young-Jig;Kim, Shae-K.;Jo, Hyung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.25 no.6
    • /
    • pp.254-258
    • /
    • 2005
  • Semisolid process is possible in any material system possessing a freezing range where the microstructure should consist of the nondendritic globular solid phase separated and enclosed by the liquid phase, referred to as semisolid slurry. There are two primary semisolid processing routes, thixocasting and rheocasting. Especially, rheocasting process has become a new focus in the field of semisolid process because of its many advantages such as no special billet required and possibility of in-house scrap recycling, compared with the thixocasting process. In-Ladle direct thermal control (DTC) rheocasting has been developed, based on the fact that there is slurry and mush transition in every molten metal and the transition, which normally occurs in the range of liquid traction of 0.1 to 0.6, could be controlled by controlling solid shape and relative solid-liquid interfacial energy. In this study, A356 Al alloy was investigated to verify In-Ladle DTC rheocasting for obtaining semisolid slurry. Modeling of heat transfer was carried out to investigate the effect of pouring temperature and ladle material, geometry and temperature and the simulation results were compared with the actual experiments.

Effect of Al-5Ti-B on the Microstructure of Rheology Material (Al-5Ti-B가 레오로지 소재의 미세조직에 미치는 영향)

  • Yang Z.;Seo P. K.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.299-302
    • /
    • 2005
  • Semisolid A356 slurries were prepared by electromagnetic stirring casting and by inoculation of Al-5Ti-B master alloy. As stirring time and addition of Al-5Ti-B are different, the grain size of the primary phase is different. Through the experiment of rheocast in a Buhler horizontal die casting machine, it was found that the finer the equiaxed primary dendrites, the smoother the die filling and better cast quality. Small equiaxed primary dendrite also results in less liquid segregation on the surface.

  • PDF