• 제목/요약/키워드: A2C

검색결과 75,507건 처리시간 0.084초

1,4-Dicyanobutene Bridged Binuclear Iridium (I, III) Complexes and Their Catalytic Activities

  • Park, Hwa-Kun;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권3호
    • /
    • pp.185-189
    • /
    • 1987
  • Reactions of $Ir(ClO)_4(CO)(PPh_3)_2$ with dicyano olefins, cis-NCCH = CH$CH_2$$CH_2$CN (cDC1B), trans-NCCH = CH$CH_2$$CH_2$CN (tDC1B), trans-NC$CH_2$CH = CH$CH_2$CN (tDC2B), and NC$CH_2$$CH_2$$CH_2$$CH_2$CN (DCB) produce binuclear dicationic iridium (I) complexes, $[(CO)(PPh_3)_2Ir-NC-A-CN-Ir(PPh_3)_2(CO)](ClO_4)_2$ (NC-A-CN = cDC1B (1a), tDC1B (1b), tDC2B (1c), DCB (1d)). Complexes 1a-1d react with hydrogen to give binuclear dicationic tetrahydrido iridium (Ⅲ ) complexes, $[(CO)(PPh_3)_2(H)_2Ir-NC-A-CN-Ir(H)_2(PPh_3)_2(CO)](ClO_4)_2$ (NC-A-CN = cDC1B (2a), tDC1B (2b), tDC2B (2c), DCB (2d)). Complexes 2a and 2b catalyze the hydrogenation of cDC1B and tDC1B, respectively to give DCB, while the complex 2c is catalytically active for the isomerization of tDC2B to give cDC1B and tDC1B and the hydrogenation of tDC2B to give DCB at $100^{\circ}C$.

Transformation of cis-1,2-Dichlororethylene and its Epoxide by a Butane-Grown Mixed Culture

  • Kim, Young;Lewis Semprini
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.147-152
    • /
    • 2004
  • Aerobic cometabolism of cis-1,2-dichloroethylene (c-DCE) and c-DCE epoxide by a butane-grown mixed culture was evaluated. Transformation of c-DCE resulted in the concomitant generation of c-DCE epoxide. Chloride release studies showed nearly complete oxidative dechlorination of c-DCE (approximately 75%). Mass spectrometry confirmed tile presence of a compound with mass-to-charge-fragment ratios of 112, 83, 48, and 35. The values are in agreement with the spectra of a chemically synthesized c-DCE epoxide. Some evidences indicating the involvement of the monooxygenase in the transformation of c-DCE epoxide are: 1) $O_2$ requirement for c-DCE transformation and butane degradation; 2) butane inhibition on c-DCE transformation and vice versa; 3) the inactivation of c-DCE and c-DCE epoxide transformations by acetylene (a known monooxygenase inactivator); and 4) tire inhibition of c-DCE epoxide transformation by c-DCE.

  • PDF

Mechanistic Aspects in the Grignard Coupling Reaction of Bis(chloromethyl)dimethylsilane with Trimethylchlorosilane

  • 조연석;유복렬;안삼영;정일남
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권4호
    • /
    • pp.422-426
    • /
    • 1999
  • The Grignard reactions of bis(chloromethyl)dimethylsilane (1) with trimethylchlorosilane (2) in THF give both the intermolecular C-Si coupling and intramolecular C-C coupling products. At beginning stage, 1 reacts with Mg to give the mono-Grignard reagent ClCH2Me2SiCH2MgCl (1) which undergoes the C-Si coupling reaction to give MC2Si(CH2SiMe3)2 3, or C-C coupling to a mixture of formula Me3SiCH2(SiMe2CH2CH2)nR1 (n = 1, 2, 3, ..; 4a, R1I = H: 4b, R1 = SiMe3). In the reaction, two reaction pathways are involved: a) Ⅰ reacts with 2 to give Me3SiCH2SiMe2CH2Cl 6 which further reacts with Mg to afford a Me2SiCH2Mel-SiCH2MgCl (Ⅱ) or b) I cyclizes intramolecularly to a silacyclopropane intermediate A, which undergoes a ring-opening polymerization by the nucleophilic attack of the intermediates I or Ⅱ, followed by the termination reaction with H2O and 2, to give 4a and 4b, respectively. As the mole ratio of 2/1 increased from 2 to 16 folds, the formation of product 3 increased from 16% to 47% while the formation of polymeric products 4 was reduced from 60% to 40%. The intermolecular C-Si coupling reaction of the pathway a becomes more favorable than the intramolecular C-C coupling reaction of the pathways b at the higher mole ratio of 2/1.

Updated Meta-analysis of the Association Between CYP2E1 RsaI/PstI Polymorphisms and Lung Cancer Risk in Chinese Population

  • Wang, Ya-Dong;Yang, Hai-Yan;Liu, Jing;Wang, Hai-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권13호
    • /
    • pp.5411-5416
    • /
    • 2014
  • Background: A number of studies have reported relationships of CYP2E1 RsaI/PstI polymorphisms with susceptibility to lung cancer in Chinese population. However, the epidemiologic results have been conflictive rather than conclusive. The purpose of this study was to address the associations of CYP2E1 RsaI/PstI polymorphisms with lung cancer risk in Chinese population comprehensively. Materials and Methods: Systematic searches were conducted in the PubMed, Science Direct, Elsevier, CNKI and Chinese Biomedical Literature Databases. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to estimate the strength of association. Results: Overall, we observed a decreased lung cancer risk among subjects carrying CYP2E1 RsaI/PstI c1/c2 and c1/c2+c2/c2 genotypes (OR=0.76, 95%CI: 0.64-0.90 and OR=0.78, 95%CI: 0.66-0.93, respectively), as compared with subjects carrying the c1/c1 genotype. In subgroup analysis, we observed a decreased lung cancer risk among c1/c2 carriers in hospital-based studies (OR=0.81, 95%CI: 0.68-0.98) and among carriers with c1/c2 and c1/c2+c2/c2 genotypes in population-based studies(OR=0.57, 95%CI: 0.42-0.79 and OR=0.58, 95%CI: 0.43-0.79, respectively), as compared with subjects carrying the c1/c1 genotype. Limiting the analysis to studies with controls in Hardy-Weinberg equilibrium (HWE), we similarly observed a decreased lung cancer risk among c1/c2 and c1/c2+c2/c2 carriers (OR=0.73, 95%CI: 0.60-0.88 and OR=0.73, 95%CI: 0.60-0.88, respectively), as compared with c1/c1. Conclusions: Our results suggested that CYP2E1 RsaI/PstI c1/c2 and c1/c2+c2/c2 variants might be a protective factor for developing lung cancer in Chinese population. Further well-designed studies with larger sample size are required to verify our findings.

Poisson Banach Modules over a Poisson C*-Algebr

  • Park, Choon-Kil
    • Kyungpook Mathematical Journal
    • /
    • 제48권4호
    • /
    • pp.529-543
    • /
    • 2008
  • It is shown that every almost linear mapping h : $A{\rightarrow}B$ of a unital PoissonC*-algebra A to a unital Poisson C*-algebra B is a Poisson C*-algebra homomorph when $h(2^nuy)\;=\;h(2^nu)h(y)$ or $h(3^nuy)\;=\;h(3^nu)h(y)$ for all $y\;\in\;A$, all unitary elements $u\;\in\;A$ and n = 0, 1, 2,$\codts$, and that every almost linear almost multiplicative mapping h : $A{\rightarrow}B$ is a Poisson C*-algebra homomorphism when h(2x) = 2h(x) or h(3x) = 3h(x for all $x\;\in\;A$. Here the numbers 2, 3 depend on the functional equations given in the almost linear mappings or in the almost linear almost multiplicative mappings. We prove the Cauchy-Rassias stability of Poisson C*-algebra homomorphisms in unital Poisson C*-algebras, and of homomorphisms in Poisson Banach modules over a unital Poisson C*-algebra.

2-LOCAL DERIVATIONS ON C*-ALGEBRAS

  • Wenbo Huang;Jiankui Li
    • 대한수학회보
    • /
    • 제61권3호
    • /
    • pp.813-823
    • /
    • 2024
  • In this paper, we prove that every 2-local derivation on several classes of C*-algebras, such as unital properly infinite, type I or residually finite-dimensional C*-algebras, is a derivation. We show that the following statements are equivalent: (1) every 2-local derivation on a C*-algebra is a derivation, (2) every 2-local derivation on a unital primitive antiliminal and no properly infinite C*-algebra is a derivation. We also show that every 2-local derivation on a group C*-algebra C*(𝔽) or a unital simple infinite-dimensional quasidiagonal C*-algebra, which is stable finite antiliminal C*-algebra, is a derivation.

p-Dimethylaminobenzaldehyde 4-(p-Ethoxyphenyl) Thiosemicarbazone구조의 정밀화 (Refinement of the Structure of p-Dimethylaminobenzaldehyde 4-(p-Ethoxyphenyl) Thiosemicarbazone)

  • 서일환;서추명;박영자
    • 한국결정학회지
    • /
    • 제2권1호
    • /
    • pp.12-16
    • /
    • 1991
  • p-dimethylaminobenzaldehyde 4-(p-ethoxyphenyl) thiosemicarbazone, C18H22N4OS의, 단위포상수는 단사정계 a=11.802(2), b=31.962(2), c=9.829(2)A, β=100.12(1)˚, V=3694.8A3이며 F(000)=1472, Mr=342.47, 공간군은 P2₁/c, Z=8, Dx=1.246 Mg m-3, Dm=1.17Mg m-3, μ=0.15mm-1이다. T=294 K에서 Mo Ka(λ=0.71073 A)을 사용하여 최종 R값은 0.0856이다. 비대칭단위내의 두개 분자간의 구조상의 큰차이는 C(9)-N(1)-C(6)-C(7)의 비틀림각이 각각 58.8(8)˚와 1(1)˚인것으로, 각 분자는 길이가 각각 2.613(7)과 2.566(7) A인 N(1)-H(10)'N(3) 분자내 수고결합을 하고 있으며 각 분자는 N(2)원자를 정점으로 하여 V-모양을 하고 있다. 독립적인 두 분자는 두개의 분자간 수소 결합 N(2)-H(11)'S'=3.367(5) A과 N(2')-H(11')'S=3.421(4)A으로 연결되어 이중체(dimer)를 형성하고 있으며 그 이중체들은 van der Waals력으로 결합되어 있다.

  • PDF

중수소화(重水素化), Pentafluorobenzyl화(化)와 GLC-Mass Spectrometry에 의한 Conjugate Trienoic Acid함유(含有) Triacylglycerol 분자종(分子種)의 입체특이적 분석(分析) (Stereospecific Analysis of the Molecular Species of the Triacylglycerols Containing Conjugate Trienoic Acids by GLC-Mass Spectrometry in Combination with Deuteration and Pentafluorobenzyl Derivatization Techniques)

  • 우효경;김성진;조용계
    • 한국응용과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.214-232
    • /
    • 2001
  • CTA ester bonds in TG molecules were not attacked by pancreatic lipase and lipases produced by microbes such as Candida cylindracea, Chromobacterium viscosum, Geotricum candidium, Pseudomonas fluorescens, Rhizophus delemar, R. arrhizus and Mucor miehei. An aliquot of total TG of all the seed oils and each TG fraction of the oils collected from HPLC runs were deuterated prior to partial hydrolysis with Grignard reagent, because CTA molecule was destroyed with treatment of Grignard reagent. Deuterated TG (dTG) was hydrolyzed partially to a mixture of deuterated diacylglycerols (dDG), which were subsequently reacted with (S)-(+)-1-(1-naphthyl)ethyl isocyanate to derivatize into dDG-NEUs. Purified dDG-NEUs were resolved into 1, 3-, 1, 2- and 2, 3-dDG-NEU on silica columns in tandem of HPLC using a solvent of 0.4% propan-1-o1 (containing 2% water)-hexane. An aliquot of each dDG-NEU fraction was hydrolyzed and (fatty acid-PFB ester). These derivatives showed a diagnostic carboxylate ion, $(M-1)^{-}$, as parent peak and a minor peak at m/z 196 $(PFB-CH_{3})^{-}$ on NICI mass spectra. In the mass spectra of the fatty acid-PFB esters of dTGs derived from the seed oils of T. kilirowii and M. charantia, peaks at m/z 285, 287, 289 and 317 were observed, which corresponded to $(M-1)^{-}$ of deuterized oleic acid ($d_{2}-C_{18:0}$), linoleic acid ($d_{4}-C_{18:0}$), punicic acid ($d_{6}-C_{18:0}$) and eicosamonoenoic acid ($d_{2}-C_{20:0}$), respectively. Fatty acid compositions of deuterized total TG of each oil measured by relative intensities of $(M-1)^-$ ion peaks were similar with those of intact TG of the oils by GLC. The composition of fatty acid-PFB esters of total dTG derived from the seed oils of T. kilirowii are as follows; $C_{16:0}$, 4.6 mole % (4.8 mole %, intact TG by GLC), $C_{18:0}$, 3.0 mole % (3.1 mole %), $d_{2}C_{18:0}$, 11.9 mole % (12.5 mole %, sum of $C_{18:1{\omega}9}$ and $C_{18:1{\omega}7}$), $d_{4}-C_{18:0}$, 39.3 mole % (38.9 mole %, sum of $C_{18:2{\omega}6}$ and its isomer), $d_{6}-C_{18:0}$, 41.1 mole % (40.5 mole %, sum of $C_{18:3\;9c,11t,13c}$, $C_{18:3\;9c,11t,13r}$ and $C_{18:3\;9t,11t,13c}$), $d_{2}-C_{20:0}$, 0.1 mole % (0.2 mole % of $C_{20:1{\omega}9}$). In total dTG derived from the seed oils of M. charantia, the fatty acid components are $C_{16:0}$, 1.5 mole % (1.8 mole %, intact TG by GLC), $C_{18:0}$, 12.0 mole % (12.3 mole %), $d_{2}-C_{18:0}$, 16.9 mole % (17.4 mole %, sum of $C_{18:1{\omega}9}$), $d_{4}-C_{18:0}$, 11.0 mole % (10.6 mole %, sum of $C_{18:2{\omega}6}$), $d_{6}-C_{18:0}$, 58.6 mole % (57.5 mole %, sum of $C_{18:3\;9c,11t,13t}$ and $C_{18:3\;9c,11t,13c}$). In the case of Aleurites fordii, $C_{16:0}$; 2.2 mole % (2.4 mole %, intact TG by GLC), $C_{18:0}$; 1.7 mole % (1.7 mole %), $d_{2}-C_{18:0}$; 5.5 mole % (5.4 mole %, sum of $C_{18:1{\omega}9}$), $d_{4}-C_{18:0}$ ; 8.3 mole % (8.5 mole %, sum of $C_{18:2{\omega}6}$), $d_{6}-C_{18:0}$; 82.0 mole % (81.2 mole %, sum of $C_{18:3\;9c,11t,13t}$ and $C_{18:3 9c,11t,13c})$. In the stereospecific analysis of fatty acid distribution in the TG species of the seed oils of T. kilirowii, $C_{18:3\;9c,11t,13r}$ and $C_{18:2{\omega}6}$ were mainly located at sn-2 and sn-3 position, while saturated acids were usually present at sn-1 position. And the major molecular species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})_{2}$ and $(C_{18:1{\omega}9})(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})$ were predominantly composed of the stereoisomer of $sn-1-C_{18:2{\omega}6}$, $sn-2-C_{18:3\;9c,11t,13c}$, $sn-3-C_{18:3\;9c,11t,13c}$, and $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:2{\omega}6}$, $sn-3-C_{18:3\;9c,11t,13c}$, respectively, and the minor TG species of $(C_{18:2{\omega}6})_{2}(C_{18:3\;9c,11t,13c})$ and $ (C_{16:0})(C_{18:3\;9c,11t,13c})_{2}$ mainly comprised the stereoisomer of $sn-1-C_{18:2{\omega}6}$, $sn-2-C_{18:2{\omega}6}$, $sn-3-C_{18:3\;9c,11t,13c}$ and $sn-1-C_{16:0}$, $sn-2-C_{18:3\;9c,11t,13c}$, $sn-3-C_{18:3\;9c,11t,13c}$. The TG of the seed oils of Momordica charantia showed that most of CTA, $C_{18:3\;9c,11t,13r}$, occurred at sn-3 position, and $C_{18:2{\omega}6}$ was concentrated at sn-1 and sn-2 compared to sn-3. Main TG species of $(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$ and $(C_{18:0})(C_{18:3\;9c,11t,13t})_{2}$ were consisted of the stereoisomer of $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ and $sn-1-C_{18:0}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$, respectively, and minor TG species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})_{2}$ and $(C_{18:1{\omega}9})(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})$ contained mostly $sn-1-C_{18:2{\omega6}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ and $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:2{\omega}6}$, $sn-3-C_{18:3\;9c,11t,13t}$. The TG fraction of the seed oils of Aleurites fordii was mostly occupied with simple TG species of $(C_{18:3\;9c,11t,13t})_{3}$, along with minor species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})_{2}$, $(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$ and $(C_{16:0})(C_{18:3\;9c,11t,13t})$. The sterospecific species of $sn-1-C_{18:2{\omega}6}$, $sn-2-C_{18:3\;9c,11t,13t}$, sn-3-C_{18:3\;9c,11t,13t}$, $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ and $sn-1-C_{16;0}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ are the main stereoisomers for the species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})_2$, $(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$ and $(C_{16:0})(C_{18:3\;9c,11t,13t})$, respectively.

ON A NEW CLASS OF DOUBLE INTEGRALS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTION 3F2

  • Kim, Insuk
    • 호남수학학술지
    • /
    • 제40권4호
    • /
    • pp.809-816
    • /
    • 2018
  • The aim of this research paper is to evaluate fifty double integrals invoving generalized hypergeometric function (25 each) in the form of $${{\int}^1_0}{{\int}^1_0}\;x^{{\gamma}-1}y^{{\gamma}+c-1}(1-x)^{c-1}(1-y)^{c+{\ell}}(1-xy)^{{\delta}-2c-{\ell}-1}{\times}_3F_2\[{^{a,\;b,\;2c+{\ell}+1}_{\frac{1}{2}(a+b+i+1),\;2c+j}}\;;{\frac{(1-x)y}{1-xy}}\]dxdy$$ and $${{\int}^1_0}{{\int}^1_0}\;x^{{\gamma}-1}y^{{\gamma}+c+{\ell}}(1-x)^{c+{\ell}}(1-y)^{c-1}(1-xy)^{{\delta}-2c-{\ell}-1}{\times}_3F_2\[{^{a,\;b,\;2c+{\ell}+1}_{\frac{1}{2}(a+b+i+1),\;2c+j}}\;;{\frac{1-y}{1-xy}}\]dxdy$$ in the most general form for any ${\ell}{\in}{\mathbb{Z}}$ and i, j = 0, ${\pm}1$, ${\pm}2$. The results are derived with the help of generalization of Edwards's well known double integral due to Kim, et al. and generalized classical Watson's summation theorem obtained earlier by Lavoie, et al. More than one hundred ineteresting special cases have also been obtained.

Confidence Intervals in Three-Factor-Nested Variance Component Model

  • Kang, Kwan-Joong
    • Journal of the Korean Statistical Society
    • /
    • 제22권1호
    • /
    • pp.39-54
    • /
    • 1993
  • In the three-factor nested variance component model with equal numbers in the cells given by $y_{ijkm} = \mu + A_i + B_{ij} + C_{ijk} + \varepsilon_{ijkm}$, the exact confidence intervals of the variance component of $\sigma^2_A, \sigma^2_B, \sigma^2_C, \sigma^2_{\varepsilon}, \sigma^2_A/\sigma^2_{\varepsilon}, \sigma^2_B/\sigma^2_{\varepsilon}, \sigma^2_C/\sigma^2_{\varepsilon}, \sigma^2_A/\sigma^2_C, \sigma^2_B/\sigma^2_C$ and $\sigma^2_A/\sigma^2_B$ are not found out yet. In this paper approximate lower and upper confidence intervals are presented.

  • PDF