• Title/Summary/Keyword: A. oryzae

Search Result 730, Processing Time 0.034 seconds

Global Transcriptome Profiling of Xanthomonas oryzae pv. oryzae under in planta Growth and in vitro Culture Conditions

  • Lee, So Eui;Gupta, Ravi;Jayaramaiah, Ramesha H.;Lee, Seo Hyun;Wang, Yiming;Park, Sang-Ryeol;Kim, Sun Tae
    • The Plant Pathology Journal
    • /
    • v.33 no.5
    • /
    • pp.458-466
    • /
    • 2017
  • Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial blight, is a major threat to rice productivity. Here, we performed RNA-Seq based transcriptomic analysis of Xoo transcripts isolated under in planta growth (on both susceptible and resistant hosts) and in vitro culture conditions. Our in planta extraction method resulted in successful enrichment of Xoo cells and provided RNA samples of high quality. A total of 4,619 differentially expressed genes were identified between in planta and in vitro growth conditions. The majority of the differentially expressed genes identified under in planta growth conditions were related to the nutrient transport, protease activity, stress tolerance, and pathogenicity. Among them, over 1,300 differentially expressed genes were determined to be secretory, including 184 putative type III effectors that may be involved in Xoo pathogenicity. Expression pattern of some of these identified genes were further validated by semi-quantitative RT-PCR. Taken together, these results provide a transcriptome overview of Xoo under in planta and in vitro growth conditions with a focus on its pathogenic processes, deepening our understanding of the behavior and pathogenicity of Xoo.

Studies on the Color Improvement of Doenjang (Fermented Soybean Paste) Using Various Aspergillus oryzae Strains (Aspergillus oryzae를 이용한 대두발효식품의 색상개량에 관한 연구)

  • 김상순;김순경;유명기;최홍식
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.1
    • /
    • pp.67-74
    • /
    • 1983
  • The studies on the color improvement of the Doenjang (two types of fermented soybean paste : soybean Doenjang and modified Doenjang) using various Aspergillus oryzae strains (6 strains : A, B, C, D, E, F) were conducted with the series of experiments of enzymatic activities (pretense, $\alpha$-and $\beta$-amylase), browning color formation (Lovibond color), major chemical components (amino nitrogen, reducing sugar and others) and sensory evaluation (color, taste and odor). Aspergillus oryzae 2157 (C strain) had a high potential for the color improvement of Doenjang products and was identified as non-browning strain during Doenjang fermentation and storage period. And also this strain was appeared to be in good enzyme activities and flavor characteristics.

  • PDF

The Antibiosis Action and Rice-Induced Resistance, Mediated by a Lipopeptide from Bacillus amyloliquefaciens B014, in Controlling Rice Disease Caused by Xanthomonas oryzae pv. oryzae

  • Li, Shu Bin;Xu, Shi Ru;Zhang, Rui Ning;Liu, Yuan;Zhou, Ren Chao
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.748-756
    • /
    • 2016
  • In the present study, a lipopeptide (named AXLP14) antagonistic to Xanthomonas oryzae pv. oryzae (Xoo) was obtained from the culture supernatant of Bacillus amyloliquefaciens B014. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis demonstrated that AXLP14 consisted of surfactin homologs. The minimum inhibition concentration and minimum bactericidal concentration of AXLP14 against Xoo were determined to be 1.25 and 2.50 mg/ml, respectively. At a concentration of 0.613 mg/ml, AXLP14 strongly inhibited the formation of Xoo biofilm. AXLP14 also inhibited the motility of Xoo in a concentration-dependent manner. Applying AXLP14 to rice seedlings significantly reduced the incidence and severity of disease caused by Xoo. In Xoo-infected rice seedlings, AXLP14 strongly and continuously up-regulated the expression of both OsNPR1 and OsWRKY45. In addition, AXLP14 effectively inhibited the Xoo-induced up-regulation of the expression of the abscisic acid biosynthesis gene OsNECD3 and the abscisic acid signalingresponsive gene OsLip9, indicating that AXLP14 may protect rice against Xoo-induced disease by enhancing salicylic acid defense and interfering with the abscisic acid response to virulence.

Protoplast Fusion Between Aspergillus oryzae and Aspergillus shirousamii (Aspergillus oryzae와 Aspergillus shirousamii간의 원형질체의 융합)

  • Shin, Dong-Bun;Ryu, Beung-Ho;Jin, Seung-Heun
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.366-372
    • /
    • 1993
  • This study mainly designed to high quality of mirin production by using protopast fusion. In order to enhance the acid carboxypeptidase (ACPase) activity by the method of protoplast fusion. In order to enhance the acid carboxypeptidase (ACPase) activity by the method of protopalst fusion, the mutants, Aspergillus oryzae 9-12 and Aspergillus shirosamii IFO 6082-60 were selected by mutation among various mutants. Protoplast of Aspergillus oryzae 9-12 and Aspergillus shirousamii IFO 6082-60 were formed effectively by incubation of the mixtures of chitinase (10mg/ml), cellulase (10mg/ml) and zymolase 20T (5mg/ml). For protopalst fusion, the mixture of two mutant were fused to effective under the optimum conditions by solutions containing 30% PEG 6,000, 0.01M $CaCl_2\;2H_2O$, 0.6M KCl and 0.05M glycine. Fusion frequency was 0.71% and fusant, F-50 appeared ACPase activity of 20,800 unit/g which has 1.5 times higher than that of each mutants.

  • PDF

Purification and Cell Wall Regeneration of Protoplasts from Pyricularia oryzae Cav. (도열병균의 원형질체 나출 및 세포벽 재생)

  • Han S. S.;Lee Y. H.;Yoo J. D.;Lee E. J.
    • Korean Journal Plant Pathology
    • /
    • v.3 no.2
    • /
    • pp.124-130
    • /
    • 1987
  • The optimum conditions for protoplast formation and regeneration from Pyricularia oryzae Cav. were selected as follows. As a basic solution, 0.02M potassium phosphate buffer solution plus 0.6M KCl adjusted to pH 5.2 with 1N HCl was used. A mixture of enzyme combinations with 20mg Cellulase R-l0/ml, 5mg Macerozyme R-l0/ml and l0mg Driselase/ml used as a lytic enzyme showed better lytie effect than any single enzyme treatment for protoplast formation. Two-day-old mycelia of P. oryzae grown in the mixture of three lytie enzyme solution at $30^{\circ}C$ for 3 hr showed best condition for protoplasts formation. For regeneration from the protoplasts of P. oryzae, potato dextrose agar containing 0.02M potassium phosphate plus 0.6M KCl used as a stabilizer was best for regeneration medium.

  • PDF

Homologous Expression and Quantitative Analysis of T3SS-Dependent Secretion of TAP-Tagged XoAvrBs2 in Xanthomonas oryzae pv. oryzae Induced by Rice Leaf Extract

  • Kim, S.H.;Lee, S.E.;Hong, M.K.;Song, N.H.;Yoon, B.;Viet, P.T.;Ahn, Y.J.;Lee, B.M.;Jung, J.W.;Kim, K.P.;Han, Y.S.;Kim, J.G.;Kang, L.W.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.679-685
    • /
    • 2011
  • Xanthomonas oryzae pv. oryzae (Xoo) produces a putative effector, XoAvrBs2. We expressed XoAvrBs2 homologously in Xoo with a TAP-tag at the C-terminus to enable quantitative analysis of protein expression and secretion. Addition of rice leaf extracts from both Xoo-sensitive and Xoo-resistant rice cultivars to the Xoo cells induced expression of the XoAvrBs2 gene at the transcriptional and translational levels, and also stimulated a remarkable amount of XoAvrBs2 secretion into the medium. In a T3SS-defective Xoo mutant strain, secretion of the TAPtagged XoAvrBs2 was blocked. Thus, we elucidated the transcriptional and translational expressions of the XoAvrBs2 gene in Xoo was induced in vitro by the interaction with rice and the induced secretion of XoAvrBs2 was T3SSdependent. It is the first report to measure the homologous expression and secretion of XoAvrBs2 in vitro by rice leaf extract. Our system for the quantitative analysis of effector protein expression and secretion could be generally used for the study of host-pathogen interactions.

Molecular and Phenotypic Investigation on Antibacterial Activities of Limonene Isomers and Its Oxidation Derivative against Xanthomonas oryzae pv. oryzae

  • Hyeonbin Kim;Mi Hee Kim;Ui-Lim Choi;Moon-Soo Chung;Chul-Ho Yun;Youngkun Shim;Jaejun Oh;Sungbeom Lee;Gun Woong Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.562-569
    • /
    • 2024
  • Xanthomonas oryzae pv. oryzae (Xoo) causes a devastating bacterial leaf blight in rice. Here, the antimicrobial effects of ᴰ-limonene, ᴸ-limonene, and its oxidative derivative carveol against Xoo were investigated. We revealed that carveol treatment at ≥ 0.1 mM in liquid culture resulted in significant decrease in Xoo growth rate (> 40%) in a concentration-dependent manner, and over 1 mM, no growth was observed. The treatment with ᴰ-limonene and ᴸ-limonene also inhibited the Xoo growth but to a lesser extent compared to carveol. These results were further elaborated with the assays of motility, biofilm formation and xanthomonadin production. The carveol treatment over 1 mM caused no motilities, basal level of biofilm formation (< 10%), and significantly reduced xanthomonadin production. The biofilm formation after the treatment with two limonene isomers was decreased in a concentration-dependent manner, but the degree of the effect was not comparable to carveol. In addition, there was negligible effect on the xanthomonadin production mediated by the treatment of two limonene isomers. Field emission-scanning electron microscope (FE-SEM) unveiled that all three compounds used in this study cause severe ultrastructural morphological changes in Xoo cells, showing shrinking, shriveling, and holes on their surface. Moreover, quantitative real-time PCR revealed that carveol and ᴰ-limonene treatment significantly down-regulated the expression levels of genes involved in virulence and biofilm formation of Xoo, but not with ᴸ-limonene. Together, we suggest that limonenes and carveol will be the candidates of interest in the development of biological pesticides.

Comparison of Free Amino Acids, Sugars, and Organic Acids in Soy Bean Paste Prepared with Various Organisms (메주균을 달리한 숙성 된장의 유리아미노산, 유리당 및 유기산 조성의 비교)

  • An, Ho-Sun;Bae, Jung-Surl;Lee, Taik-Soo
    • Applied Biological Chemistry
    • /
    • v.30 no.4
    • /
    • pp.345-350
    • /
    • 1987
  • Three lots of mejues were prepared with three different strains of Aspergillus oryzae, Bacillus natto, Bacillus subtilis and one was made by conventional method. The four different soy bean pastes were analyzed for compositions of free amino acids, sugars and organic acids during the period of fermentation. Amino nitrogen contents in the samples of A. oryzae were higher than others throughout the aging period. The amounts of each amino acids were varied markedly among the samples after 20-days, while glutamic acid, aspartic acid, lysine and phenylalanine were dominant in all samples after 90-days. Glucose contents were found to be in the range of $0.46{\sim}2.66%$ and other sugars of fructose, sucrose, rhamnose and maltose were less than 0.35%. The levels of total free sugar were relatively higher in the samples prepared with B. natto than others. Citric, lactic, malic, acetic and oxalic acids were identified, and the content of lactic acid was higher in the samples of A. oryzae, whereas citric acid was higher in conventional method.

  • PDF

Comparison for enzymic activity of Nuruk and quality properties of Yakju by different fungi (곰팡이 균주에 따른 누룩의 효소활성 및 약주 품질특성 비교)

  • Huh, Chang-Ki;Kim, So-Mang;Kim, Yong-Doo
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.573-580
    • /
    • 2014
  • The enzymatic activity of Nuruk and the quality properties of Yakju were investigated according to different fungi. The fungi that were used in this study were Aspergillus kawachii KCCM 32819, Aspergillus niger KCCM 32005, Rhizopus japonicus KCCM 11604, Rhizopus oryzae KCCM 11272, Rhizopus oryzae KCCM 11273, Rhizopus oryzae KCCM 11276, and Mucor rouxii KCCM 60148. The study results are as follows. The saccharogenic power of Rhizopus oryzae KCCM 11272 Nuruk was the highest (3,647.72 SP/g) among all the samples. The ${\alpha}$-amylase production and protease activities were highest (3.76 DU and 4.7 tyrosine mg/min, respectively) in the Rhizopus japonicus KCCM 11604 Nuruk. The pH levels of the Yakju made with commercial Nuruk and Rhizopus japonicus KCCM 11604 Nuruk were 4.14 and 4.07, respectively. The total titratable acid content of the Yakju made with Rhizopus oryzae KCCM 11273 Nuruk was the highest (0.56%) among all the samples. Rhizopus japonicus KCCM 11604 and Rhizopus oryzae KCCM 11272 had the highest ethanol yields (15.18% and 15.10%, respectively). In the sensory evaluation carried out in this study, the panel preferred the Yakju made with Rhizopus japonicus KCCM 11604 Nuruk. Overall, however, the panel did not like the Yakju made with Aspergillus niger KCCM 32005 Nuruk.

Characterization of Type VI Secretion System in Xanthomonas oryzae pv. oryzae and Its Role in Virulence to Rice

  • Choi, Yeounju;Kim, Namgyu;Mannaa, Mohamed;Kim, Hongsup;Park, Jungwook;Jung, Hyejung;Han, Gil;Lee, Hyun-Hee;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.289-296
    • /
    • 2020
  • Type VI secretion system (T6SS) is a contact-dependent secretion system, employed by most gram-negative bacteria for translocating effector proteins to target cells. The present study was conducted to investigate T6SS in Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight in rice, and to unveil its functions. Two T6SS clusters were found in the genome of Xoo PXO99A. The deletion mutants, Δhcp1, Δhcp2, and Δhcp12, targeting the hcp gene in each cluster, and a double-deletion mutant targeting both genes were constructed and tested for growth rate, pathogenicity to rice, and inter-bacterial competition ability. The results indicated that hcp in T6SS-2, but not T6SS-1, was involved in bacterial virulence to rice plants. However, neither T6SS-1 nor T6SS-2 had any effect on the ability to compete with Escherichia coli or other bacterial cells. In conclusion, T6SS gene clusters in Xoo have been characterized, and its role in virulence to rice was confirmed.