• 제목/요약/키워드: A. cortex

검색결과 1,988건 처리시간 0.025초

성향정기산이 흰쥐의 MCAO에 의한 국소뇌허혈에 미치는 영향 (Neuroprotective Effect of Sunghyangjungki-San on Focal Cerebral Ischemia Induced by MCAO in Rats)

  • 김효선;김연섭
    • 동의생리병리학회지
    • /
    • 제20권3호
    • /
    • pp.596-602
    • /
    • 2006
  • This study evaluated neuroprotective effect of Sunghyangjungki-San (SHS) on the focal cerebral ischemia. The rats were induced infarct in cerebral cortex and caudoputamen by using temporal occlussion of the middle cerebral artery (MCAO), then water extract of SHS was treated for MCAO rats. Neuroprotective effect was evaluated by neurological score, infarct sizes and total volume, positive neurons against Bax, Caspase-3, HSP-72, and $HIF-1{\alpha}$ in infarct area with immunohistochemistry. The results obtained were as follows: Treatment of SHS improved neurological score of MCAO rats, but there was not a statistical significance. Treatment of SHS reduced significantly infarct sizes in the brain sections of MCAO rats. Treatment of SHS reduced significantly total volume of infarct of MCAO rats. Treatment of SHS reduced significantly Bax positive neurons in penumbra of cerebral cortex of MCAO rats. Treatment of SHS reduced significantly Caspase-3 positive neurons in caudoputamen and penumbra of cerebral cortex of MCAO rats. Treatment of SHS reduced significantly HSP-72 positive neurons in penumbra of cerebral cortex of MCAO rats. Treatment of SHS reduced significantly $IF-1{\alpha}$ positive neurons in penumbra of cerebral cortex of MCAO rats.

흰쥐 좌골신경손상 후 전기 자극이 대뇌피질에서의 MAP2 발현에 미치는 영향 (The Effect of Electrical Stimulation on MAP2 Expression in the Cerebral Cortex following Sciatic Nerve Crush Injury in Rat)

  • 안은영;김진상
    • The Journal of Korean Physical Therapy
    • /
    • 제17권3호
    • /
    • pp.391-401
    • /
    • 2005
  • The purpose of this study was to investigate the effect of electrical stimulation(EST) on MAP2(Microtubule Associated Protein 2) expression in cerebral cortex following sciatic nerve crush injury in rats. Twelve Sprague-Dawley adult female rats, six for control and six for experimental, were anesthetized and their sciatic nerves were crushed. The electrical stimulation (EST) was applicated with 3 Hz for 10 minuties in a day for muscles innervated sciatic nerve. The MAP2 expression in cerebral cortex was identified from immunohistochemistry against MAP2. The result of this study were as follow: 1) In control group, MAP2 immunoreactive neurons were observed but there no significant increase for 3 days. 2) MAP2 immunoreactive neurons were increased markably in experimental group than control group. 3) MAP2 immunoreactive neurons were increased markably after applicating with EST in sciatic nerve crush injury induced group from 2nd day. This study showed that the application of EST for muscles after sciatic nerve crushed injury made MAP2 immunoreactive neurons in the cerebral cortex increased. Therefore, the electrical stimulation on the peripheral site, denervated muscle, may facilitate MAP2 expression in the cerebral cortex.

  • PDF

연령에 따른 흰쥐 부신 피질의 전자현미경적 관찰 (Ultrastructural Studies on the Adrenal Cortex of The Developmental Rats)

  • 박주희;이재현;구세광;이형식
    • Applied Microscopy
    • /
    • 제28권2호
    • /
    • pp.207-213
    • /
    • 1998
  • To investigate ultrastructural changes on the adrenal cortex of the developmental rats, tissues were collected at 20 days of gestation, at birth, 7 days, 15 days and 30 days after birth and studied by transmission electron microscopy (TEM) the mitochondrial cristae of zona reticularis in the adrenal cortex of rats were a vesicular type and the vesicles were formed prior to 20 days of gestation. Also, the numbers of vesicles were $56.2{\pm}25.3$ in 20 days of gestation, $174.0{\pm}74.7$ at birth, $127.8{\pm}74.7$ in 7 days, $87.1{\pm}40.8$ in 15 days and $86.7{\pm}53.8$ in 30 days after birth, In this study, it was identified that the vesicles of mitochondrial cristae were formed by budding. The dense bodies were also observed in the nuclei of cortex cells from 20 days of gestation to 30 days after birth.

  • PDF

전처리 및 건조방법에 따른 가시오갈피생약재의 품질변화 (Quality Changes in Eleutherococcus senticosus Cortex Processed by Different Pretreatment and Drying Method)

  • 정햇님;임상현;김희연;김경대;박유화;함헌주;이광재;김경희;안영섭
    • 한국약용작물학회지
    • /
    • 제18권2호
    • /
    • pp.98-104
    • /
    • 2010
  • Eleuthero(Eleutherococcus senticosus Maxim.) cortex is well known as a herb medicine for tonic. This study was performed to improve the quality of dried E. senticosus cortex. Investigation of quality factor and contents of efficient compounds under different steaming times and drying methods were performed to determine the proper processing and drying conditions of Eleuthero cortex harvested on March in annual stems. The proper steaming time for peeling bark to make high quality Eleuthero cortex took less than 20 mins. Eleutheroside B and E contents among drying methods were significantly different at 5% level DMRT. The $50^{\circ}C$ heat drying was the most advisable condition for drying, when drying and keeping contents of effective compounds.

Characterization of Multiple Synaptic Boutons in Cerebral Motor Cortex in Physiological and Pathological Condition: Acrobatic Motor Training Model and Traumatic Brain Injury Model

  • Kim, Hyun-Wook;Na, Ji eun;Rhyu, ImJoo
    • Applied Microscopy
    • /
    • 제48권4호
    • /
    • pp.102-109
    • /
    • 2018
  • Multiple synaptic boutons (MSBs) have been reported to be synapse with two or more postsynaptic terminals in one presynaptic terminal. These MSBs are known to be increased by various brain stimuli. In the motor cortex, increased number of MSB was observed in both acrobat training (AC) model and traumatic brain injury (TBI) model. Interestingly one is a physiological stimuli and the other is pathological insult. The purpose of this study is to compare the connectivity of MSBs between AC model and TBI model in the cerebral motor cortex, based on the hypothesis that the connectivity of MSBs might be different according to the models. The motor cortex was dissected from perfused brain of each experimental animal, the samples were prepared for routine transmission electron microscopy. The 60~70 serial sections were mounted on the one-hole grid and MSB was analyzed. The 3-dimensional analysis revealed that 94% of MSBs found in AC model synapse two postsynaptic spines from same dendrite. But, 28% MSBs from TBI models synapse two postsynaptic spines from different dendrite. This imply that the MSBs observed in motor cortex of AC model and TBI model might have different circuits for the processing the information.

Effect of Intracerebroventricular Administration of Ethylcholine Aziridinium (AF64A) on Dopaminergic Nervous Sys-tems

  • Lim, Dong-Koo;Ma, Young;Yi, Eunyoung
    • Archives of Pharmacal Research
    • /
    • 제19권1호
    • /
    • pp.23-29
    • /
    • 1996
  • Changes in dopaminergic activities were investigated after the intracerebroventricular (icv) administration of ethylcholine aziridium (AF64A) in rats. The levels of dopamine (DA) and metabolites, the activities of tyrosine hydroxylase (TH) and monoamine oxidase (MAO), and the specific binding sites of dopamine receptros in striata, hippocampus, and frontal cortex were assessed 6 days after the AF64A treatment with 3 nmol/each ventrcle. In frontal cortex, the levels of DA and metabolities were significantly decreased without changes in metabolites/DA ratios in the AF64A-treated groups. In contrast, the ratios of metabolites/DA were significantly decreased in striatum and hippocampus in the AF64A treatment. The activity of TH in frontal cortex was significantly decreased. However, that in other areas was not changed. Also the activity of MAO-A was not changed in the studied brain regions. However, the activity of MAO-B in striatum was significantly increased with no change in other areas. The specific binding sites of dopamine D1 and D2 receptors were increased in AF64A-treated frontal cortex. However, those were not changed in striatum and hippocampus except the small decreased specific binding sites of dopamine D-1 receptors in striatum after AF64A treatment. These results indicate that the dopaminergic activity was altered in AF64A treatment. Furthermore, it suggest that the decreased dopaminergic activities in each brain regions might be differently affected by AF64A treatment.

  • PDF

Application of in Utero Electroporation of G-Protein Coupled Receptor (GPCR) Genes, for Subcellular Localization of Hardly Identifiable GPCR in Mouse Cerebral Cortex

  • Kim, Nam-Ho;Kim, Seunghyuk;Hong, Jae Seung;Jeon, Sung Ho;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • 제37권7호
    • /
    • pp.554-561
    • /
    • 2014
  • Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects through its cognate receptors ($LPA_1-LPA_6$). $LPA_1$, which is predominantly expressed in the brain, plays a pivotal role in brain development. However, the role of $LPA_1$ in neuronal migration has not yet been fully elucidated. Here, we delivered $LPA_1$ to mouse cerebral cortex using in utero electroporation. We demonstrated that neuronal migration in the cerebral cortex was not affected by the overexpression of $LPA_1$. Moreover, these results can be applied to the identification of the localization of $LPA_1$. The subcellular localization of $LPA_1$ was endogenously present in the perinuclear area, and overexpressed $LPA_1$ was located in the plasma membrane. Furthermore, $LPA_1$ in developing mouse cerebral cortex was mainly expressed in the ventricular zone and the cortical plate. In summary, the overexpression of $LPA_1$ did not affect neuronal migration, and the protein expression of $LPA_1$ was mainly located in the ventricular zone and cortical plate within the developing mouse cerebral cortex. These studies have provided information on the role of $LPA_1$ in brain development and on the technical advantages of in utero electroporation.

안구운동 민감 소실 및 재처리 요법(Eye Movement Desensitization and Reprocessing) 치료 후 국소 뇌 혈류 변화:두 증례의 SPECT 연구 (Changes in the Regional Cerebral Perfusion after Eye Movement Desensitization and Reprocessing:A SPECT Study of Two Cases)

  • 오동훈;최준호
    • 생물정신의학
    • /
    • 제11권2호
    • /
    • pp.173-180
    • /
    • 2004
  • Over the last decade, EMDR(Eye Movement Desensitization and Reprocessing) has emerged as a promising new treatment for trauma and other anxiety-based disorders. However, neurobiological mechanism of EMDR has not been well understood. Authors report SPECT findings of two patients of PTSD before and after EMDR. Brain 99mTc-ECD-SPECT was performed before and after EMDR treatment. To evaluate the significance of changes in the regional cerebral perfusion, t-test was conducted on the resulting images using SPM99. In addition, clinical scales(CAPS, CGI, STAI) were employed to asses the changes in the clinical symptoms of the patients. After EMDR treatment, each showed significant improvement in clinical symptoms. The cerebral perfusion increased in bilateral dorsolateral prefrontal cortex, and decreased in the temporal association cortex. The differences in the cerebral perfusion between patients after treatment and normal controls decreased. These changes appeared mainly in the limbic area the and the prefrontal cortex. These results suggest that EMDR may show the therapeutic effect through 1) improvement in the emotional control by increased activity in the prefrontal cortex, 2) inhibited hyperstimuli on amygdala by deactivation of the association cortex, 3) inhibition on past trauma related memory, and 4) keeping the functional balance between the limbic area and the prefrontal cortex. This case report needs further replication from studies with larger sample.

  • PDF

ARM Cortex-M3 상에서 곱셈 연산 최적화 구현 (Compact Implementation of Multiplication on ARM Cortex-M3 Processors)

  • 서화정
    • 한국정보통신학회논문지
    • /
    • 제22권9호
    • /
    • pp.1257-1263
    • /
    • 2018
  • 경량 사물인터넷 디바이스 상에서의 암호화 구현은 정확하고 빠르게 연산을 수행하여 서비스의 가용성을 높이는 것이 중요하다. 특히 곱셈 연산은 RSA, ECC, 그리고 SIDH와 같은 공개키 암호화에 활용되는 핵심 연산으로 최적화된 구현이 요구된다. 하지만 최신 저전력 프로세서인 ARM Cortex-M3 프로세서의 경우에는 곱셈연산 입력 크기에 따라 수행속도가 달라지는 보안 취약점을 가지고 있다. 수행속도가 달라지게 될 경우 연산 시간의 차이점을 확인하여 비밀정보를 추출하는 것이 가능하다. 이를 보완하기 위해 최근 연구에서는 고정된 연산 시간 안에 곱셈 연산을 수행하는 기법이 제안되었다. 하지만 해당 구현에서는 여전히 속도가 완전히 최적화되어 있지 않다. 본 논문에서는 기존에 제안된 곱셈연산을 보다 효율적으로 연산하기 위한 기법을 제안한다. 제안된 기법은 기존 방식에 비해 연산 속도를 최대 25.7% 향상시킨다.

Functional MR Imaging of Working Memory in the Human Brain

  • Dong Gyu Na;Jae Wook Ryu;Hong Sik Byun;Dae Seob Choi;Eun Jeong Lee;Woo In Chung;Jae Min Cho;Boo Kyung Han
    • Korean Journal of Radiology
    • /
    • 제1권1호
    • /
    • pp.19-24
    • /
    • 2000
  • Objective: In order to investigate the functional brain anatomy associated with verbal and visual working memory, functional magnetic resonance imaging was performed. Materials and Methods: In ten normal right handed subjects, functional MR images were obtained using a 1.5-T MR scanner and the EPI BOLD technique. An item recognition task was used for stimulation, and during the activation period of the verbal working memory task, consonant letters were used. During the activation period of the visual working memory task, symbols or diagrams were employed instead of letters. For the post-processing of images, the SPM program was used, with the threshold of significance set at p < .001. We assessed activated brain areas during the two stimulation tasks and compared the activated regions between the two tasks. Results: The prefrontal cortex and secondary visual cortex were activated bilaterally by both verbal and visual working memory tasks, and the patterns of activated signals were similar in both tasks. The superior parietal cortex was also activated by both tasks, with lateralization to the left in the verbal task, and bilaterally without lateralization in the visual task. The inferior frontal cortex, inferior parietal cortex and temporal gyrus were activated exclusively by the verbal working memory task, predominantly in the left hemisphere. Conclusion: The prefrontal cortex is activated by two stimulation tasks, and this is related to the function of the central executive. The language areas activated by the verbal working memory task may be a function of the phonological loop. Bilateral prefrontal and superior parietal cortices activated by the visual working memory task may be related to the visual maintenance of objects, representing visual working memory.

  • PDF