• Title/Summary/Keyword: A. campestris

Search Result 240, Processing Time 0.027 seconds

Testing Bacterial Spot Resistant Lines of Capsicum Pepper for Nuclear Genotype Interacting with Male Sterile Cytoplasm (고추 더뎅이병 저항성 계통의 세포질웅성불임 관련 핵내유전자형 검정)

  • 김병수;황희숙
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.212-216
    • /
    • 1998
  • Capsicum pepper selections fro PI163192, PI241670, PI244670, PI271322, PI308787, PI322719, and PI369994 were confirmed to be non-hypersensitively resistant to race 3 of Xanthomonas campestris pv. vesicatoria. A resistant cultivar,‘SR’, was shown to be hypersensitive. Four Koran local cultivars, a cytoplasmic male sterile line (A-line) and its maintainer (B-line) were highly susceptible. The resistant selections and cultivars were crossed with a male sterile A-line (Smsms) and fertility of their F1 hybrids was examined by observing he pollen production, testing pollen germination, and quantifying the amount of pollen produced per anther to identify the genotype interacting with the male sterile cytoplasm. The seven resistant PI selections turned out to be restorers (N(S)MsMs) and‘SR’to be a maintainer (Nmsms).

  • PDF

Effects of the special media on the mycelium growth in Agaricus campestris(II) (몇가지 물질(物質)이 Agaricus campestris균사생장(菌絲生長)에 미치는 영향(影響) (제(第) II 보(報)))

  • Cho, So-Nam;Hwang, Kyu-Chan
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.189-193
    • /
    • 1978
  • Effects of the special media on the mycelium growth in Agaricus campestris has been studied. The results are summarized as follows; 1. The mycelium growth of Agaricus campestris were considerably Stimulated on the Carrot (Dancus carota L.) basal medium which was added 4ml. of carrot extract, Cucumber(Cucumis sativus L.) basal medium added 3ml of cucumber extract, and Radish (Rhaphanus sativus L.) basal medium added 3ml. of radish extract during the culture for 144 hours. 2. The mycelium of Agaricus campestris on the media which was added the several kinds of vegetable extracts shows a lot of growth for 144 hours. The orders are as follows; Carrot basal medium(4ml/100ml)>Cucumber basal medium (3ml/100ml)>Radish basal medium (3ml/100ml)>Lettuce basal medium (2ml/100ml)>Cabbage basal medium (2ml/100ml). However, the Lettuce (Lactuca scariota L.) basal medium and the Cabbage (Brassica chinensis L.) basal medium among these five media are no significant differences.

  • PDF

Biochemical Changes in Brassica Seedlings Due to Cold Acclimation Treatment (Brassica속 작물 유묘에서 장기 저온 순화처리에 따른 생화학적 변화)

  • Park, Woo-Churl;Oh, Yun-Jin;Nam, Min-Hee
    • Applied Biological Chemistry
    • /
    • v.38 no.3
    • /
    • pp.212-217
    • /
    • 1995
  • This study was aimed for determining the biochemical mechanism of cold tolerance in crops and for searching the biochemical genetic marker related with cold tolerance by the analysis of isozyme pattern. We investigated various biochemical changes induced by the long-term cold acclimation in cold sensitive rape (B. napus) and in cold tolerant 'Sandongchae'(B. campestris) seedlings. The cold shock after long-term cold acclimation to B. napus and B. campestris greatly increased the activities of peroxidase 157% and 50% in root fraction and, 201% and 205% in hypocotyl, respectively. Simultaneously, the activity of superoxide dismutase was largely increased in hypocotyl fraction, too. Protein contents of hypocotyl fractions in B. napus and B. campestris were also increased by 11.4% and 57.8%, respectively. The band of pl 6.4 among peroxidase isozymes newly biosynthesized during long-term cold acclimation was emerged in the hypocotyl fraction of cold tolerant B. campestris as well as in the root of both species. From above and previous results, we presented a model of interconversions of molecular oxygen species due to the cold injury and biochemically inferred the mechanism of cold tolerance in crops.

  • PDF

A Gene-Tagging System for Monitoring of Xanthomonas Species

  • Song, Wan-Yeon;Steven W. Hutcheson;Efs;Norman W. Schaad
    • The Plant Pathology Journal
    • /
    • v.15 no.3
    • /
    • pp.137-143
    • /
    • 1999
  • A novel chromosomal gene tagging technique using a specific fragment of the fatty acid desaturase-like open reading frame (des-like ORF) from the tox-argK gene cluster of Pseudomonas syringae pv. phaseolicola was developed to identify Xanthomonas spp.released into the environment as biocontrol agents. X. campestris pv. convolvuli FB-635, a pathogen of Convolvulus arvensis L., (bindweed), was chosen as the organism in which to develop and test the system. A 0.52 kb DES fragment amplified from P. syringae pv. phaseolicola C-199 was inserted into pGX15, a cosmid clone containing a 10.3 kb Eco RI-HindIII fragment derived from the xanthomonadin biosynthetic gene cluster contained in plasmid pIG102, to create a pigG::DES insertion. The 10.8 kb EcoRI-BamHI fragment carrying the pigG:: DES insertion was cloned into pLAFR3 to generate pLXP22. pLXP22 was then conjugated into X. campestris pv. convolvuli FB-635 and the pigG::DES insertion integrated into the bacterial chromosome by marker exchange. Rifampicin resistant, tetracycline sensitive, starch hydrolyzing, white colonies were used to differentiate the marked strain from yellow pigmented wild-type ones. PCR primers specific for the unique DES fragment were used for direct detection of the marked strain. Result showed the marked strain could be detected at very low levels even in the presence of high levels of other closely related or competitive bacteria. This PCR-based DES-tagging system provides a rapid and specific tool for directly monitoring the dispersal and persistence of Xanthomonas spp.released into the environment.

  • PDF

Thioltransferase (Glutaredoxin) from Chinese Cabbage: Purification and Properties

  • Cho, Young-Wook;Park, Eun-Hee;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.377-383
    • /
    • 1998
  • Thioltransferase, also known as glutaredoxin, was purified from Chinese cabbage (Brassica campestris ssp. napus var. pekinensis) by a combination of ion-exchange chromatography and gel filtration. Its purity was confirmed by SDS-polyacrylamide gel electrophoresis and its molecular weight was estimated to be about 12,000 which is comparable with those of most known thioltransferases. The enzyme utilizes 2-hydroxyethyl disulfide, S-sulfocysteine, ${\alpha}-chymotrypsin$, insulin, and trypsin as substrates in the presence of reduced glutathione. The enzyme has Km values of 0.03-0.97 mM for these substrates. It appeared to contain dehydroascorbate reductase activity. The pH optimum of the enzyme was 8.5, when 2-hydroxyethyl disulfide was used as a substrate. It was greatly activated by reduced glutathione. Its activity was not significantly lost when stored at high temperature, indicating its thermostable character. It may play an important role in thiol-disulfide exchange in plant cells.

  • PDF

Benzaldehyde as a new class plant growth regulator on Brassica campestris

  • Choi, Geun-Hyoung;Ro, Jin-Ho;Park, Byoung-Jun;Lee, Deuk-Yeong;Cheong, Mi-Sun;Lee, Dong-Yeol;Seo, Woo-Duck;Kim, Jin Hyo
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.2
    • /
    • pp.159-164
    • /
    • 2016
  • Plant growth regulator is an essential pesticide to date while the available active ingredient is not well understood unlike fungicide, insecticide and herbicide. This study was aimed to evaluate a new chemical class of plant growth regulator, and the total of 92 benzene derivatives were screened for their germination and early stage of the root growth regulation on Brassica campestris. Thirty benzaldehydes, nine acids, one amide, and one ester showed potent root growth inhibitory activity (>70 % inhibition) while only salicylaldehyde showed potent germination inhibition ($IC_{50}=81.2mg/L$) suggesting that benzaldehyde was a key module candidate for the growth inhibition. Benzaldehydes were further evaluated for root growth inhibition. 2,3-Dihydroxybenzaldehyde and salicylaldehyde showed $IC_{50}$ values of 8.0 and 83.9 mg/L, respectively. On the other hand, salicylaldehyde, and 2,4,5-trihydroxybenzaldehyde were found to have root growth promotion effects less than 10 mg/L. This result suggests that the benzaldehyde is a new class candidate for plant growth regulator.

Production of Mushroom Mycelium (Agaricus campestris) in Shaking Culture (진탕배양법(振?培養法)에 의한 양송이 균사체(菌絲體)의 생산(生産))

  • Lee, Jeong-Sook;Lee, Su-Rae;Yu, Tai-Jong
    • Korean Journal of Food Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.22-29
    • /
    • 1975
  • Conditions for submerged culture of Agaricus campestris var. bisporus and the chemical composition of its mycelium were investigated. In shaking culture with TGY basal medium at $27{\sim}30^{\circ}C$, pH tended to increase upon culture period, mycelial growth was the highest on 12th day, with relatively high nitrogen content of 7% and sugar in the medium disappeared almost at the end of culture period. As a nitrogen source, ammonium phosphate (dibasic) gave relatively high mycelial yield and the addition of yeast extract gave rise to better results. As a carbon source, glucose was the best, fructose, maltose, lactose and sucrose gave the same results, and soluble starch was utilized slightly. Mushroom mycelium contained 48% of protein, 8 free amino acids including arginine, histidine, lysine, isoleucine, leucine, phenylalanine, proline, tyrosine and its protein consisted of most essential amino acids, with relatively high contents of lysine and threonine. Therefore, mushroom mycelium deserves to be a high quality protein food.

  • PDF

Mass Transfer Effects in Xanthan Gum Fermentation (Xanthan Gum 발효에 있어서 물질전달의 영향)

  • 임병연;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.277-282
    • /
    • 1989
  • Xanthan gum is a biopolymer produced by Xanthomonas campestris. In xanthan gum fermentation, the fermentation broth changes to highly viscous non-Newtonian fluid as xanthan gum concentration increases. Maximum xanthan gum concentration is limited by high viscosity of the broth since mass transfers of nutrient and oxygen are inhibited. Int this study the mass transfer effects were investigated in batch and fed-batch fermentations at various agitation speeds and by separate oxygen transfer experiments. Xanthan gum production rate was observed to be largely dependent on oxygen transfer coefficient; while cell growth rate was not affected highly by this factor.

  • PDF