• Title/Summary/Keyword: A-priori Analysis

Search Result 183, Processing Time 0.029 seconds

Visitor Segmentation as a Means of Reducing Variance in spending profiles Corps of Engineers Lakes (미국공병대(美國工兵隊) 관할 호수에 수반되는 여행비용의 분산 감소를 위한 시장분할법)

  • Lee, Ju Hee;Propst, Dennis B.
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.3
    • /
    • pp.203-213
    • /
    • 1992
  • The purpose of this study is to segment recreationists into groups which are homogeneous with respect to their spending patterns and trip characteristics. Date were derived from a larger study aimed at developing nationally representative expenditure profiles for recreation visitors to Corps of Engineers projects. Segmentation of these data reduces variance and helps to identify distinctive final demand vectors for input - output application. A - priori and cluster analysis approaches for identifying segments are compared. The a - priori segmentation approach identified 12 segments and the cluster analysis approach identified 3 segments. The 3 nonresident clusters - labeled "day use", "overnight", and "overnight camping" - show lower mean squares within groups than the a - priori segments on almost all nonresident spending categories with an exception of boating expenses. For the Corps of Engineers, implications of these findings for the estimation of economic impacts are discussed.

  • PDF

A Comparative Study on the Applicability of A Priori Estimates of Adjustment Models for Assessment of Surface Parameter Estimates (표면 파라미터 추정값 평가를 위한 조정계산모델별 전통계량 적용도 비교분석)

  • Seo, Suyoung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.549-559
    • /
    • 2012
  • This paper presents a comparative analysis on the applicability of a priori statistic information about adjustment models when the surface shape parameters are estimated at an arbitrary point in an elevation data. Although the reliability of the estimates are known to be affected by surface condition and the adjustment models, there has been little research in a systematic and detail way. When the raw data have been taken from a real measurement, its true value cannot be known, however, thus this study used simulation data in order to analyze clearly the applicability of adjustment models. The generation of simulated data was performed by superimposing horizontal, slope, and curve surfaces and adding a certain amount of noise. Comparative analysis was performed by associating the a posteriori estimates with a priori statistics of each adjustment models. The experimental results show the estimation characteristics of adjustment models against varying surface conditions.

A-priori Comparative Assessment of the Performance of Adjustment Models for Estimation of the Surface Parameters against Modeling Factors (표면 파라미터 계산시 모델링 인자에 따른 조정계산 추정 성능의 사전 비교분석)

  • Seo, Su-Young
    • Spatial Information Research
    • /
    • v.19 no.2
    • /
    • pp.29-36
    • /
    • 2011
  • This study performed quantitative assessment of the performance of adjustment models by a-priori analysis of the statistics of the surface parameter estimates against modeling factors. Lidar, airborne imagery, and SAR imagery have been used to acquire the earth surface elevation, where the shape properties of the surface need to be determined through neighboring observations around target location. In this study, parameters which are selected to be estimated are elevation, slope, second order coefficient. In this study, several factors which are needed to be specified to compose adjustment models are classified into three types: mathematical functions, kernel sizes, and weighting types. Accordingly, a-priori standard deviations of the parameters are computed for varying adjustment models. Then their corresponding confidence regions for both the standard deviation of the estimate and the estimate itself are calculated in association with probability distributions. Thereafter, the resulting confidence regions are compared to each other against the factors constituting the adjustment models and the quantitative performance of adjustment models are ascertained.

Soccer Scene Analysis and Coordinate Transformation using a priori Knowledge (사전 지식을 이용한 축구 경기장면 분석 및 좌표 변환)

  • Yoon, Ho-Sub;Soh, Jung;Min, Byung-Woo;Yang, Young-Kyu
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1085-1088
    • /
    • 1999
  • This paper presents a method for soccer scene analysis and coordinate transformation from scene to ground model using a priori knowledge. First, the ground and spectator regions are separated, and various objects are extracted from the separated ground region. Second, an affine model is used for mapping the object positions on the soccer image into the position on the ground model. Problems regarding holes arising from mapping processing are solved using inverse mapping instead of a usual interpolation method. Experiments are performed on a PC using about 100 RGB images acquired at 240*640 resolution and 3∼5 frames per second.

  • PDF

Supervised learning and frequency domain averaging-based adaptive channel estimation scheme for filterbank multicarrier with offset quadrature amplitude modulation

  • Singh, Vibhutesh Kumar;Upadhyay, Nidhi;Flanagan, Mark;Cardiff, Barry
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.966-977
    • /
    • 2021
  • Filterbank multicarrier with offset quadrature amplitude modulation (FBMC-OQAM) is an attractive alternative to the orthogonal frequency division multiplexing (OFDM) modulation technique. In comparison with OFDM, the FBMC-OQAM signal has better spectral confinement and higher spectral efficiency and tolerance to synchronization errors, primarily due to per-subcarrier filtering using a frequency-time localized prototype filter. However, the filtering process introduces intrinsic interference among the symbols and complicates channel estimation (CE). An efficient way to improve the CE in FBMC-OQAM is using a technique known as windowed frequency domain averaging (FDA); however, it requires a priori knowledge of the window length parameter which is set based on the channel's frequency selectivity (FS). As the channel's FS is not fixed and not a priori known, we propose a k-nearest neighbor-based machine learning algorithm to classify the FS and decide on the FDA's window length. A comparative theoretical analysis of the mean-squared error (MSE) is performed to prove the proposed CE scheme's effectiveness, validated through extensive simulations. The adaptive CE scheme is shown to yield a reduction in CE-MSE and improved bit error rates compared with the popular preamble-based CE schemes for FBMC-OQAM, without a priori knowledge of channel's frequency selectivity.

Application of Bayesian Statistical Analysis to Multisource Data Integration

  • Hong, Sa-Hyun;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.394-399
    • /
    • 2002
  • In this paper, Multisource data classification methods based on Bayesian formula are considered. For this decision fusion scheme, the individual data sources are handled separately by statistical classification algorithms and then Bayesian fusion method is applied to integrate from the available data sources. This method includes the combination of each expert decisions where the weights of the individual experts represent the reliability of the sources. The reliability measure used in the statistical approach is common to all pixels in previous work. In this experiment, the weight factors have been assigned to have different value for all pixels in order to improve the integrated classification accuracies. Although most implementations of Bayesian classification approaches assume fixed a priori probabilities, we have used adaptive a priori probabilities by iteratively calculating the local a priori probabilities so as to maximize the posteriori probabilities. The effectiveness of the proposed method is at first demonstrated on simulations with artificial and evaluated in terms of real-world data sets. As a result, we have shown that Bayesian statistical fusion scheme performs well on multispectral data classification.

  • PDF

Advanced Design Environmental With Adaptive And Knowledge-Based Finite Elements

  • Haghighi, Kamyar;Jang, Eun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1222-1229
    • /
    • 1993
  • An advanced design environment , which is based on adaptive and knowledge -based finite elements (INTELMESH), has been developed. Unlike other approaches, INTEMMESH incorporates the information about the object geometry as well as the boundary and loading conditions to generate an ${\alpha}$-priori finite element mesh which is more refined around the critical regions of the problem domain. INTEMMESH is designed for planar domains and axisymmetric 3-D structures of elasticity and heat transfer subjected to mechanical and thermal loading . It intelligently identifies the critical regions/points in the problem domain and utilize the new concepts of substructuring and wave propagation to choose the proper mesh size for them. INTEMMESH generates well-shaped triangular elements by applying trangulartion and Laplacian smoothing procedures. The adaptive analysis involves the intial finite elements analyze and an efficient ${\alpha}$-posteriori error analysis involves the initial finite element anal sis and an efficient ${\alpha}$-posteriori error analysis and estimation . Once a problem is defined , the system automatically builds a finite element model and analyzes the problem though automatic iterative process until the error reaches a desired level. It has been shown that the proposed approach which initiates the process with an ${\alpha}$-priori, and near optimum mesh of the object , converges to the desired accuracy in less time and at less cost. Such an advanced design/analysis environment will provide the capability for rapid product development and reducing the design cycle time and cost.

  • PDF

Development, Demonstration and Validation of the Deep Space Orbit Determination Software Using Lunar Prospector Tracking Data

  • Lee, Eunji;Kim, Youngkwang;Kim, Minsik;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.213-223
    • /
    • 2017
  • The deep space orbit determination software (DSODS) is a part of a flight dynamic subsystem (FDS) for the Korean Pathfinder Lunar Orbiter (KPLO), a lunar exploration mission expected to launch after 2018. The DSODS consists of several sub modules, of which the orbit determination (OD) module employs a weighted least squares algorithm for estimating the parameters related to the motion and the tracking system of the spacecraft, and subroutines for performance improvement and detailed analysis of the orbit solution. In this research, DSODS is demonstrated and validated at lunar orbit at an altitude of 100 km using actual Lunar Prospector tracking data. A set of a priori states are generated, and the robustness of DSODS to the a priori error is confirmed by the NASA planetary data system (PDS) orbit solutions. Furthermore, the accuracy of the orbit solutions is determined by solution comparison and overlap analysis as about tens of meters. Through these analyses, the ability of the DSODS to provide proper orbit solutions for the KPLO are proved.

Seismic Hazard Analysis Considering the Incompleteness in the Korean Earthquake Catalog (한반도 지진목록자료의 불완정성을 고려한 지진재해도 분석)

  • 연관희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.413-420
    • /
    • 1998
  • In this paper, two methods, Stepp's and EQHAZARD, are introduced and applied to a recent earthquake catalog for the entire Korean Peninsula that can estimate the seismicity by incorporating the incompleteness of the earthquake catalog. EQHAZARD method, different from Stepp's method in that it used priori information besides the assumption of stationary Poisson process of the earthquakes, produces the higher seismicity rate for the smaller earthquakes. EQHAZARD method are also used to estimated the incompleteness of the recent earthquake catalog for the southern part of the Korean Peninsula in terms of the Probability of Activity for the specified earthquke magnitude classes and time periods. It is believed that the Probability of Activity thus obtained can be used as a strong priori information in estimating the seismicity for a seismic source within the region where there are not enough earthquakes detected. Finally, it is demonstrated that the arbitrary selection of the methods. of incompleteness analysis brings quite different seismic hazard results, which suggests the need to employ a rigid quantitative method for incompleteness analysis in estimating the seismicity parameters in order to reduce the uncertainty in the Seismic Hazard Results with the EQHAZARD method being one of the competent practical alternatives.

  • PDF

Algorithm for Finding the Best Principal Component Regression Models for Quantitative Analysis using NIR Spectra (근적외 스펙트럼을 이용한 정량분석용 최적 주성분회귀모델을 얻기 위한 알고리듬)

  • Cho, Jung-Hwan
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.6
    • /
    • pp.377-395
    • /
    • 2007
  • Near infrared(NIR) spectral data have been used for the noninvasive analysis of various biological samples. Nonetheless, absorption bands of NIR region are overlapped extensively. It is very difficult to select the proper wavelengths of spectral data, which give the best PCR(principal component regression) models for the analysis of constituents of biological samples. The NIR data were used after polynomial smoothing and differentiation of 1st order, using Savitzky-Golay filters. To find the best PCR models, all-possible combinations of available principal components from the given NIR spectral data were derived by in-house programs written in MATLAB codes. All of the extensively generated PCR models were compared in terms of SEC(standard error of calibration), $R^2$, SEP(standard error of prediction) and SECP(standard error of calibration and prediction) to find the best combination of principal components of the initial PCR models. The initial PCR models were found by SEC or Malinowski's indicator function and a priori selection of spectral points were examined in terms of correlation coefficients between NIR data at each wavelength and corresponding concentrations. For the test of the developed program, aqueous solutions of BSA(bovine serum albumin) and glucose were prepared and analyzed. As a result, the best PCR models were found using a priori selection of spectral points and the final model selection by SEP or SECP.