• Title/Summary/Keyword: A-homomorphism

Search Result 182, Processing Time 0.02 seconds

ON STRONGLY CONNECTED MODULES WITH PERFECT

  • PARK CHIN HONG;LEE JEONG KEUN;SHIM HONG TAE
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.653-662
    • /
    • 2005
  • In this paper we shall give the relationships among $T_R,\;End_{R}(M),\;SEnd_{R}(M)\;and\;SAut_R(M)$ when M is a perfect R-module. If M and N are perfect modules, we get $SAut_{R}(M {\times}N){\cong}SAut_{R}(M){\times}SAut_R(N)$. Also we shall discuss that $_x(M)_H$ is a subgroup of $_x(M)$ if M is quasi-perfect and $_x(M)_H$ is a normal subgroup of $_x(M)$ if M is perfect.

AN INJECTIVITY THEOREM FOR CASSON-GORDON TYPE REPRESENTATIONS RELATING TO THE CONCORDANCE OF KNOTS AND LINKS

  • Friedl, Stefan;Powell, Mark
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.395-409
    • /
    • 2012
  • In the study of homology cobordisms, knot concordance and link concordance, the following technical problem arises frequently: let ${\pi}$ be a group and let M ${\rightarrow}$ N be a homomorphism between projective $\mathbb{Z}[{\pi}]$-modules such that $\mathbb{Z}_p\;{\otimes}_{\mathbb{Z}[{\pi}]}M{\rightarrow}\mathbb{Z}_p{\otimes}_{\mathbb{Z}[{\pi}]}\;N$ is injective; for which other right $\mathbb{Z}[{\pi}]$-modules V is the induced map $V{\otimes}_{\mathbb{Z}[{\pi}]}\;M{\rightarrow}\;V{\otimes}_{\mathbb{Z}[{\pi}]}\;N$ also injective? Our main theorem gives a new criterion which combines and generalizes many previous results.

TRANSFER PROPERTIES OF GORENSTEIN HOMOLOGICAL DIMENSION WITH RESPECT TO A SEMIDUALIZING MODULE

  • Di, Zhenxing;Yang, Xiaoyan
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1197-1214
    • /
    • 2012
  • The classes of $G_C$ homological modules over commutative ring, where C is a semidualizing module, extend Holm and J${\varnothing}$gensen's notions of C-Gorenstein homological modules to the non-Noetherian setting and generalize the classical classes of homological modules and the classes of Gorenstein homological modules within this setting. On the other hand, transfer of homological properties along ring homomorphisms is already a classical field of study. Motivated by the ideas mentioned above, in this article we will investigate the transfer properties of C and $G_C$ homological dimension.

THE EXISTENCE OF TWO POSITIVE SOLUTIONS FOR $m$-POINT BOUNDARY VALUE PROBLEM WITH SIGN CHANGING NONLINEARITY

  • Liu, Jian
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.517-529
    • /
    • 2012
  • In this paper, the existence theorem of two positive solutions is established for nonlinear m-point boundary value problem by using an inequality for the following third-order differential equations $$({\phi}(u^{\prime\prime}))^{\prime}+a(t)f(t,u(t))=0,\;t{\in}(0,1)$$, $${\phi}(u^{\prime\prime}(0))=\sum^{m-2}_{i=1}a_i{\phi}(u^{\prime\prime}({\xi}_i)),\;u^{\prime}(1)=0,\;u(0)=\sum^{m-2}_{i=1}b_iu({\xi}_i)$$, where ${\phi}:R{\rightarrow}R$ is an increasing homeomorphism and homomorphism and $\phi(0)=0$. The nonlinear term f may change sign, as an application, an example to demonstrate our results is given.

INVARIANTS OF THE SYMMETRIC GROUP

  • Lee, Hyang-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.2
    • /
    • pp.293-300
    • /
    • 1995
  • Let $R = k[y_1,\cdots,y_n] \otimes E[x_1, \cdots, x_n]$ with characteristic $k = p > 2$ (odd prime), where $$\mid$y_i$\mid$ = 2, $\mid$x_i$\mid$ = 1$ and $y_i = \betax_i, \beta$ is the Bockstein homomorphism. Topologically, $R = H^*(B(Z/p)^n,k)$. For a symmetric group $\sum_n, R^{\sum_n} = k[\sigma_1,\cdots,\sigma_n] \otimes E[d\sigma_1, \cdots, d\sigma_n]$ where d is the derivation satisfying $d(y_i) = x_i$ and $d(x_iy_i) = x_iy_i + x_jy_i, 1 \leq i, j \leq n$. We give a direct proof of this theorem by using induction.

  • PDF

(${\tilde{\varphi}}$, ${\tilde{\psi}}$)-AMENABILITY OF L1(G)

  • Ghorbani, Zahra
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.559-568
    • /
    • 2019
  • In this paper we introduce and study the concept of of (${\varphi}$, ${\psi}$)-am-enability of a locally compact group G, where ${\varphi}$ is a continuous homomorphism on G and ${\psi}:G{\rightarrow}{\mathbb{C}}$ multiplicative linear function. We prove that if the group algebra $L^1$ (G) is (${\tilde{\varphi}}$, ${\tilde{\psi}}$)-amenable then G is (${\varphi}$, ${\psi}$)-amenable, where ${\tilde{\varphi}}$ is the extension of ${\varphi}$ to M(G). In the case where ${\varphi}$ is an isomorphism on G it is shown that the converse is also valid.

ADDITIVE OPERATORS PRESERVING RANK-ADDITIVITY ON SYMMETRY MATRIX SPACES

  • Tang, Xiao-Min;Cao, Chong-Guang
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.115-122
    • /
    • 2004
  • We characterize the additive operators preserving rank-additivity on symmetry matrix spaces. Let $S_{n}(F)$ be the space of all $n\;\times\;n$ symmetry matrices over a field F with 2, $3\;\in\;F^{*}$, then T is an additive injective operator preserving rank-additivity on $S_{n}(F)$ if and only if there exists an invertible matrix $U\;\in\;M_n(F)$ and an injective field homomorphism $\phi$ of F to itself such that $T(X)\;=\;cUX{\phi}U^{T},\;\forallX\;=\;(x_{ij)\;\in\;S_n(F)$ where $c\;\in;F^{*},\;X^{\phi}\;=\;(\phi(x_{ij}))$. As applications, we determine the additive operators preserving minus-order on $S_{n}(F)$ over the field F.

RINGS IN WHICH SUMS OF d-IDEALS ARE d-IDEALS

  • Dube, Themba
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.539-558
    • /
    • 2019
  • An ideal of a commutative ring is called a d-ideal if it contains the annihilator of the annihilator of each of its elements. Denote by DId(A) the lattice of d-ideals of a ring A. We prove that, as in the case of f-rings, DId(A) is an algebraic frame. Call a ring homomorphism "compatible" if it maps equally annihilated elements in its domain to equally annihilated elements in the codomain. Denote by $SdRng_c$ the category whose objects are rings in which the sum of two d-ideals is a d-ideal, and whose morphisms are compatible ring homomorphisms. We show that $DId:\;SdRng_c{\rightarrow}CohFrm$ is a functor (CohFrm is the category of coherent frames with coherent maps), and we construct a natural transformation $RId{\rightarrow}DId$, in a most natural way, where RId is the functor that sends a ring to its frame of radical ideals. We prove that a ring A is a Baer ring if and only if it belongs to the category $SdRng_c$ and DId(A) is isomorphic to the frame of ideals of the Boolean algebra of idempotents of A. We end by showing that the category $SdRng_c$ has finite products.

ON CLEAN AND NIL CLEAN ELEMENTS IN SKEW T.U.P. MONOID RINGS

  • Hashemi, Ebrahim;Yazdanfar, Marzieh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.57-71
    • /
    • 2019
  • Let R be an associative ring with identity, M a t.u.p. monoid with only one unit and ${\omega}:M{\rightarrow}End(R)$ a monoid homomorphism. Let R be a reversible, M-compatible ring and ${\alpha}=a_1g_1+{\cdots}+a_ng_n$ a non-zero element in skew monoid ring $R{\ast}M$. It is proved that if there exists a non-zero element ${\beta}=b_1h_1+{\cdots}+b_mh_m$ in $R{\ast}M$ with ${\alpha}{\beta}=c$ is a constant, then there exist $1{\leq}i_0{\leq}n$, $1{\leq}j_0{\leq}m$ such that $g_{i_0}=e=h_{j_0}$ and $a_{i_0}b_{j_0}=c$ and there exist elements a, $0{\neq}r$ in R with ${\alpha}r=ca$. As a consequence, it is proved that ${\alpha}{\in}R*M$ is unit if and only if there exists $1{\leq}i_0{\leq}n$ such that $g_{i_0}=e$, $a_{i_0}$ is unit and aj is nilpotent for each $j{\neq}i_0$, where R is a reversible or right duo ring. Furthermore, we determine the relation between clean and nil clean elements of R and those elements in skew monoid ring $R{\ast}M$, where R is a reversible or right duo ring.

ORTHOGONALITY IN FINSLER C*-MODULES

  • Amyari, Maryam;Hassanniah, Reyhaneh
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.561-569
    • /
    • 2018
  • In this paper, we introduce some notions of orthogonality in the setting of Finsler $C^*$-modules and investigate their relations with the Birkhoff-James orthogonality. Suppose that ($E,{\rho}$) and ($F,{\rho}^{\prime}$) are Finsler modules over $C^*$-algebras $\mathcal{A}$ and $\mathcal{B}$, respectively, and ${\varphi}:{\mathcal{A}}{\rightarrow}{\mathcal{B}}$ is a *-homomorphism. A map ${\Psi}:E{\rightarrow}F$ is said to be a ${\varphi}$-morphism of Finsler modules if ${\rho}^{\prime}({\Psi}(x))={\varphi}({\rho}(x))$ and ${\Psi}(ax)={\varphi}(a){\Psi}(x)$ for all $a{\in}{\mathcal{A}}$ and all $x{\in}E$. We show that each ${\varphi}$-morphism of Finsler $C^*$-modules preserves the Birkhoff-James orthogonality and conversely, each surjective linear map between Finsler $C^*$-modules preserving the Birkhoff-James orthogonality is a ${\varphi}$-morphism under certain conditions. In fact, we state a version of Wigner's theorem in the framework of Finsler $C^*$-modules.