• Title/Summary/Keyword: A priori estimate

Search Result 94, Processing Time 0.025 seconds

Camera pose estimation framework for array-structured images

  • Shin, Min-Jung;Park, Woojune;Kim, Jung Hee;Kim, Joonsoo;Yun, Kuk-Jin;Kang, Suk-Ju
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.10-23
    • /
    • 2022
  • Despite the significant progress in camera pose estimation and structure-from-motion reconstruction from unstructured images, methods that exploit a priori information on camera arrangements have been overlooked. Conventional state-of-the-art methods do not exploit the geometric structure to recover accurate camera poses from a set of patch images in an array for mosaic-based imaging that creates a wide field-of-view image by sewing together a collection of regular images. We propose a camera pose estimation framework that exploits the array-structured image settings in each incremental reconstruction step. It consists of the two-way registration, the 3D point outlier elimination and the bundle adjustment with a constraint term for consistent rotation vectors to reduce reprojection errors during optimization. We demonstrate that by using individual images' connected structures at different camera pose estimation steps, we can estimate camera poses more accurately from all structured mosaic-based image sets, including omnidirectional scenes.

Development of a Cost Index for Site Developing Project (단지조성공사용 공사비 지수의 개발)

  • Bae Keon;Lee Tai-Sik;Park Jong-Hyun;Lee Won-Yong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.423-426
    • /
    • 2002
  • The foundation for developing a cost estimation system based on historical data has been being prepared in Korea. Historical data is a priori of developing a cost estimation model. Cost Index, one of the historical data, is used to estimate construction cost and to adjust the amount of contract money in the foreign country, whereas it is not used in domestic except for the road construction project in Korea. Construction cost indices can be used by an estimator in tender analysis, pricing, price adjustment, cost planning, and forecasting. In this regards, this paper identified the problems in developing Cost Index evaluation process by comparing the standard of framing Cost Index used in British to the one used in Korea. Then, the scheme for improving a Cost Index required for Site Developing Construction was proposed. Twenty-two cases of engineering estimate data were used to compare the domestic standard to the foreign one in deriving a Cost Index.

  • PDF

Inverse Model Parameter Estimation Based on Sensitivity Analysis for Improvement of PM10 Forecasting (PM10 예보 향상을 위한 민감도 분석에 의한 역모델 파라메터 추정)

  • Yu, Suk Hyun;Koo, Youn Seo;Kwon, Hee Yong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.886-894
    • /
    • 2015
  • In this paper, we conduct sensitivity analysis of parameters used for inverse modeling in order to estimate the PM10 emissions from the 16 areas in East Asia accurately. Parameters used in sensitivity analysis are R, the observational error covariance matrix, and B, a priori (background) error covariance matrix. In previous studies, it was used with the predetermined parameter empirically. Such a method, however, has difficulties in estimating an accurate emissions. Therefore, an automatically determining method for the most suitable value of R and B with an error measurement criteria and posteriori emissions accuracy is required. We determined the parameters through a sensitivity analysis, and improved the accuracy of posteriori emissions estimation. Inverse modeling methods used in the emissions estimation are pseudo inverse, NNLS (Nonnegative Least Square), and BA(Bayesian Approach). Pseudo inverse has a small error, but has negative values of emissions. In order to resolve the problem, NNLS is used. It has a unrealistic emissions, too. The problems are resolved with BA(Bayesian Approach). We showed the effectiveness and the accuracy of three methods through case studies.

New procedure for determining equivalent deep-water wave height and design wave heights under irregular wave conditions

  • Kang, Haneul;Chun, Insik;Oh, Byungcheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.168-177
    • /
    • 2020
  • Many coastal engineering designs utilize empirical formulas containing the Equivalent Deep-water Wave Height (EDWH), which is normally given a priori. However, no studies have explicitly discussed a method for determining the EDWH and the resulting design wave heights (DEWH) under irregular wave conditions. Unfortunately, it has been the case in many design practices that the EDWH is incorrectly estimated by dividing the Shallow-water Wave Height (SWH) at the structural position with its corresponding shoaling coefficient of regular wave. The present study reexamines the relationship between the Shallow-water Wave Height (SWH) at the structural position and its corresponding EDWH. Then, a new procedure is proposed to facilitate the correct estimation of EDWH. In this procedure, the EDWH and DEWH are determined differently according to the wave propagation model used to estimate the SWH. For this, Goda's original method for nonlinear irregular wave deformation is extended to produce values for linear shoaling. Finally, exemplary calculations are performed to assess the possible errors caused by a misuse of the wave height calculation procedure. The relative errors with respect to the correct values could exceed 20%, potentially leading to a significant under-design of coastal or harbor structures in some cases.

Bayesian Nonstationary Probability Rainfall Estimation using the Grid Method (Grid Method 기법을 이용한 베이지안 비정상성 확률강수량 산정)

  • Kwak, Dohyun;Kim, Gwangseob
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.37-44
    • /
    • 2015
  • A Bayesian nonstationary probability rainfall estimation model using the Grid method is developed. A hierarchical Bayesian framework is consisted with prior and hyper-prior distributions associated with parameters of the Gumbel distribution which is selected for rainfall extreme data. In this study, the Grid method is adopted instead of the Matropolis Hastings algorithm for random number generation since it has advantage that it can provide a thorough sampling of parameter space. This method is good for situations where the best-fit parameter values are not easily inferred a priori, and where there is a high probability of false minima. The developed model was applied to estimated target year probability rainfall using hourly rainfall data of Seoul station from 1973 to 2012. Results demonstrated that the target year estimate using nonstationary assumption is about 5~8% larger than the estimate using stationary assumption.

Joint Blind Parameter Estimation of Non-cooperative High-Order Modulated PCMA Signals

  • Guo, Yiming;Peng, Hua;Fu, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4873-4888
    • /
    • 2018
  • A joint blind parameter estimation algorithm based on minimum channel stability function aimed at the non-cooperative high-order modulated paired carrier multiple access (PCMA) signals is proposed. The method, which uses hierarchical search to estimate time delay, amplitude and frequency offset and the estimation of phase offset, including finite ambiguity, is presented simultaneously based on the derivation of the channel stability function. In this work, the structure of hierarchical iterative processing is used to enhance the performance of the algorithm, and the improved algorithm is used to reduce complexity. Compared with existing data-aided algorithms, this algorithm does not require a priori information. Therefore, it has significant advantage in solving the problem of blind parameter estimation of non-cooperative high-order modulated PCMA signals. Simulation results show the performance of the proposed algorithm is similar to the modified Cramer-Rao bound (MCRB) when the signal-to-noise ratio is larger than 16 dB. The simulation results also verify the practicality of the proposed algorithm.

Comparison of ICA-based and MUSIC-based Approaches Used for the Extraction of Source Time Series and Causality Analysis (뇌 신호원의 시계열 추출 및 인과성 분석에 있어서 ICA 기반 접근법과 MUSIC 기반 접근법의 성능 비교 및 문제점 진단)

  • Jung, Young-Jin;Kim, Do-Won;Lee, Jin-Young;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.4
    • /
    • pp.329-336
    • /
    • 2008
  • Recently, causality analysis of source time series extracted from EEG or MEG signals is becoming of great importance in human brain mapping studies and noninvasive diagnosis of various brain diseases. Two approaches have been widely used for the analyses: one is independent component analysis (ICA), and the other is multiple signal classification (MUSIC). To the best of our knowledge, however, any comparison studies to reveal the difference of the two approaches have not been reported. In the present study, we compared the performance of the two different techniques, ICA and MUSIC, especially focusing on how accurately they can estimate and separate various brain electrical signals such as linear, nonlinear, and chaotic signals without a priori knowledge. Results of the realistic simulation studies, adopting directed transfer function (DTF) and Granger causality (GC) as measures of the accurate extraction of source time series, demonstrated that the MUSIC-based approach is more reliable than the ICA-based approach.

Tracking of Walking Human Based on Position Uncertainty of Dynamic Vision Sensor of Quadcopter UAV (UAV기반 동적영상센서의 위치불확실성을 통한 보행자 추정)

  • Lee, Junghyun;Jin, Taeseok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • The accuracy of small and low-cost CCD cameras is insufficient to provide data for precisely tracking unmanned aerial vehicles (UAVs). This study shows how a quad rotor UAV can hover on a human targeted tracking object by using data from a CCD camera rather than imprecise GPS data. To realize this, quadcopter UAVs need to recognize their position and posture in known environments as well as unknown environments. Moreover, it is necessary for their localization to occur naturally. It is desirable for UAVs to estimate their position by solving uncertainty for quadcopter UAV hovering, as this is one of the most important problems. In this paper, we describe a method for determining the altitude of a quadcopter UAV using image information of a moving object like a walking human. This method combines the observed position from GPS sensors and the estimated position from images captured by a fixed camera to localize a UAV. Using the a priori known path of a quadcopter UAV in the world coordinates and a perspective camera model, we derive the geometric constraint equations that represent the relation between image frame coordinates for a moving object and the estimated quadcopter UAV's altitude. Since the equations are based on the geometric constraint equation, measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the quadcopter UAV. The Kalman filter scheme is applied for this method. Its performance is verified by a computer simulation and experiments.

Localization and Navigation of a Mobile Robot using Single Ultrasonic Sensor Module (단일 초음파 센서모듈을 이용한 이동로봇의 위치추정 및 주행)

  • Jin Taeseok;Lee JangMyung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.2 s.302
    • /
    • pp.1-10
    • /
    • 2005
  • This paper presents a technique for localization of a mobile robot using a single ultrasonic sensor. The mobile robot is designed for operating in a well-structured environment that can be represented by planes, edges, corners and cylinders in the view of structural features. In the case of ultrasonic sensors, these features have the range information in the form of the arc of a circle that is generally named as RCD (Region of Constant Depth). Localization is the continual provision of a knowledge of position which is deduced from it's a priori position estimation. The environment of a robot is modeled into a two dimensional grid map. we defines a physically-based sonar sensor model and employs an extended Kalman filter to estimate position of the robot. The performance and simplicity of the approach is demonstrated with the results produced by sets of experiments using a mobile robot.

Position Control of Mobile Robot for Human-Following in Intelligent Space with Distributed Sensors

  • Jin Tae-Seok;Lee Jang-Myung;Hashimoto Hideki
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.204-216
    • /
    • 2006
  • Latest advances in hardware technology and state of the art of mobile robot and artificial intelligence research can be employed to develop autonomous and distributed monitoring systems. And mobile service robot requires the perception of its present position to coexist with humans and support humans effectively in populated environments. To realize these abilities, robot needs to keep track of relevant changes in the environment. This paper proposes a localization of mobile robot using the images by distributed intelligent networked devices (DINDs) in intelligent space (ISpace) is used in order to achieve these goals. This scheme combines data from the observed position using dead-reckoning sensors and the estimated position using images of moving object, such as those of a walking human, used to determine the moving location of a mobile robot. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the intelligent space. Using the a priori known path of a moving object and a perspective camera model, the geometric constraint equations that represent the relation between image frame coordinates of a moving object and the estimated position of the robot are derived. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot, and the Kalman filtering scheme is used to estimate the location of moving robot. The proposed approach is applied for a mobile robot in ISpace to show the reduction of uncertainty in the determining of the location of the mobile robot. Its performance is verified by computer simulation and experiment.